Topological Invariants for Projection Method Patterns

Paperback (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $52.00
Usually ships in 1-2 business days
(Save 16%)
Other sellers (Paperback)
  • All (3) from $52.00   
  • New (3) from $52.00   
Close
Sort by
Page 1 of 1
Showing 1 – 2 of 3
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$52.00
Seller since 2007

Feedback rating:

(474)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
Brand new. We distribute directly for the publisher. This memoir develops, discusses and compares a range of commutative and non-commutative invariants defined for projection ... method tilings and point patterns. The projection method refers to patterns, particularly the quasiperiodic patterns, constructed by the projection of a strip of a high dimensional integer lattice to a smaller dimensional Euclidean space. In the first half of the memoir the acceptance domain is very general -- any compact set which is the closure of its interior -- while in the second half we concentrate on the so-called canonical patterns. The topological invariants used are various forms of $K$-theory and cohomology applied to a variety of both $C^*$-algebras and dynamical systems derived from such a pattern.The invariants considered all aim to capture geometric properties of the original patterns, such as quasiperiodicity or self-similarity, but one of the main motivations is also to provide an accessible approach to the the $K_0$ group of the algebra of observables associated to a quasicrystal with atoms arranged on such a pattern.The main results provide complete descriptions of the (unordered) $K$-theory and cohomology of codimension 1 projection patterns, formul for these invariants for codimension 2 and 3 canonical projection patterns, general methods for higher codimension patterns and a closed formula for the Euler characteristic of arbitrary canonical projection patterns. Computations are made for the Ammann-Kramer tiling. Also included are qualitative descriptions of these invariants for generic canonical projection patterns. Further results include an obstruction to a tiling arising as a substitution and an obstruction to a substitution pattern arising as a projection. One corollary is that, generically, projection patterns cannot be derived via substitution systems. Read more Show Less

Ships from: Boonsboro, MD

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$115.12
Seller since 2015

Feedback rating:

(367)

Condition: New
Brand New Item.

Ships from: Chatham, NJ

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Page 1 of 1
Showing 1 – 2 of 3
Close
Sort by

More About This Textbook

Overview

This memoir develops, discusses and compares a range of commutative and non-commutative invariants defined for projection method tilings and point patterns. The projection method refers to patterns, particularly the quasiperiodic patterns, constructed by the projection of a strip of a high dimensional integer lattice to a smaller dimensional Euclidean space. In the first half of the memoir the acceptance domain is very general — any compact set which is the closure of its interior — while in the second half we concentrate on the so-called canonical patterns. The topological invariants used are various forms of $K$-theory and cohomology applied to a variety of both $C^*$-algebras and dynamical systems derived from such a pattern. The invariants considered all aim to capture geometric properties of the original patterns, such as quasiperiodicity or self-similarity, but one of the main motivations is also to provide an accessible approach to the the $K_0$ group of the algebra of observables associated to a quasicrystal with atoms arranged on such a pattern. The main results provide complete descriptions of the (unordered) $K$-theory and cohomology of codimension 1 projection patterns, formulae for these invariants for codimension 2 and 3 canonical projection patterns, general methods for higher codimension patterns and a closed formula for the Euler characteristic of arbitrary canonical projection patterns. Computations are made for the Ammann-Kramer tiling. Also included are qualitative descriptions of these invariants for generic canonical projection patterns. Further results include an obstruction to a tiling arising as a substitution and an obstruction to a substitution pattern arising as a projection. One corollary is that, generically, projection patterns cannot be derived via substitution systems.

Read More Show Less

Product Details

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)