A Transition to Advanced Mathematics / Edition 7

Hardcover (Print)
Rent
Rent from BN.com
$44.47
(Save 83%)
Est. Return Date: 11/15/2014
Used and New from Other Sellers
Used and New from Other Sellers
from $126.40
Usually ships in 1-2 business days
(Save 52%)
Other sellers (Hardcover)
  • All (11) from $126.40   
  • New (3) from $256.90   
  • Used (8) from $126.54   

Overview

A TRANSITION TO ADVANCED MATHEMATICS helps students make the transition from calculus to more proofs-oriented mathematical study. The most successful text of its kind, the 7th edition continues to provide a firm foundation in major concepts needed for continued study and guides students to think and express themselves mathematically—to analyze a situation, extract pertinent facts, and draw appropriate conclusions. The authors place continuous emphasis throughout on improving students' ability to read and write proofs, and on developing their critical awareness for spotting common errors in proofs. Concepts are clearly explained and supported with detailed examples, while abundant and diverse exercises provide thorough practice on both routine and more challenging problems. Students will come away with a solid intuition for the types of mathematical reasoning they'll need to apply in later courses and a better understanding of how mathematicians of all kinds approach and solve problems.

Read More Show Less

Editorial Reviews

Booknews
This text was developed from lecture notes for a course at Central Michigan U. that was designed to bridge the gap between calculus and advanced courses for students who say: "I understand mathematics, but I just can't do proofs." Provides an overview of the major ideas needed for continued work, guides students to think and express themselves mathematically, and presents an introduction to modern algebra and analysis, including the foundational topics of logic, sets, relations, and functions. To help make the introduction to elementary proof techniques more manageable, new to this edition are separate sections on direct proofs and proofs by contrapositive and contradiction. There are also new and revised explanations, examples, and exercises. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Read More Show Less

Product Details

  • ISBN-13: 9780495562023
  • Publisher: Cengage Learning
  • Publication date: 5/28/2010
  • Edition description: Older Edition
  • Edition number: 7
  • Pages: 416
  • Sales rank: 324,467
  • Product dimensions: 7.50 (w) x 9.30 (h) x 0.90 (d)

Meet the Author

The authors are the leaders in this course area. They decided to write this text based upon a successful transition course that Richard St. Andre developed at Central Michigan University in the early 1980s. This was the first text on the market for a transition to advanced mathematics course and it has remained at the top as the leading text in the market. Douglas Smith is Professor of Mathematics at the University of North Carolina at Wilmington. Dr. Smith's fields of interest include Combinatorics / Design Theory (Team Tournaments, Latin Squares, and applications), Mathematical Logic, Set Theory, and Collegiate Mathematics Education.

Maurice Eggen is Professor of Computer Science at Trinity University. Dr. Eggen's research areas include Parallel and Distributed Processing, Numerical Methods, Algorithm Design, and Functional Programming.

Richard St. Andre is Associate Dean of the College of Science and Technology at Central Michigan University. Dr. St. Andre's teaching interests are quite diverse with a particular interest in lower division service courses in both mathematics and computer science.

Read More Show Less

Table of Contents

1. LOGIC AND PROOFS. Propositions and Connectives. Conditionals and Biconditionals. Quantifiers. Basic Proof Methods I. Basic Proof Methods II. Proofs Involving Quantifiers. Additional Examples of Proofs 2. SET THEORY. Basic Notions of Set Theory. Set Operations. Extended Set Operations and Indexed Families of Sets. Induction. Equivalent Forms of Induction. Principles of Counting. 3. RELATIONS AND PARTITIONS. Relations. Equivalence Relations. Partitions. Ordering Relations. Graphs. 4. FUNCTIONS. Functions as Relations. Constructions of Functions. Functions That Are Onto; One-to-One Functions. One-to-One Correspondences and Inverse Functions. Images of Sets. Sequences. 5. CARDINALITY. Equivalent Sets; Finite Sets. Infinite Sets. Countable Sets. The Ordering of Cardinal Numbers. Comparability of Cardinal Numbers and the Axiom of Choice. 6. CONCEPTS OF ALGEBRA: GROUPS. Algebraic Structures. Groups. Subgroups. Operation Preserving Maps. Rings and Fields. 7. CONCEPTS OF ANALYSIS: COMPLETENESS OF THE REAL NUMBERS. Ordered Field Properties of the Real Numbers. The Heine-Borel Theorem. The Bolzano-Weierstrass Theorem. The Bounded Monotone Sequence Theorem. Comparability of Cardinals and the Axiom of Choice.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)