Transport Modeling for Environmental Engineers and Scientists / Edition 2

Hardcover (Print)
Buy New
Buy New from BN.com
$129.54
Used and New from Other Sellers
Used and New from Other Sellers
from $126.78
Usually ships in 1-2 business days
(Save 15%)
Other sellers (Hardcover)
  • All (5) from $126.78   
  • New (2) from $126.78   
  • Used (3) from $129.53   

Overview

Transport Modeling for Environmental Engineers and Scientists, Second Edition, builds on integrated transport courses in chemical engineering curricula, demonstrating the underlying unity of mass and momentum transport processes. It describes how these processes underlie the mechanics common to both pollutant transport and pollution control processes.

Read More Show Less

Editorial Reviews

From the Publisher
"This is indeed a significant contribution to the literature and is a useful book for students, scientists, and engineers interested in mathematical modeling in typical environmental situations." (Environ Earth Sci, 2010)
Booknews
An introduction to environmental modeling uniting the principles underlying mass and momentum transport phenomena with environmental processes that determine the spread and control of pollutants in air, water, and soil. The undergraduate text builds on transport courses in the chemical engineering curriculum and covers the fundamentals of mass and momentum transport processes, aerosol and colloidal systems, sedimentation, coagulation, adsorption, chromatography, porous media transport, chemical kinetics, and reactor design. Contains exercises, worked examples, and illustrations. Annotation c. by Book News, Inc., Portland, Or.
Read More Show Less

Product Details

Meet the Author

Mark M. Clark, PhD, was Professor of Civil and Environmental Engineering at the University of Illinois for over twenty years, and is currently Clinical Professor of Civil and Environmental Engineering at Northwestern University, Evanston, Illinois.

Read More Show Less

Table of Contents

Preface.

Acknowledgments.

List of Symbols.

1 Conservation Laws and Continua.

1.1. Introduction.

1.2. Conservation Laws: Systems Approach.

1.3. Conservation Laws: Control Volume Approach.

1.4. Conservation Laws: Differential Element Approach.

1.5. Continua.

1.6. Sources, Sinks, Reactions, and Box Models.

1.7. Summary.

Exercises.

References.

Bibliography.

2 Low-Concentration Particle Suspensions and Flows.

2.1. Introduction.

2.2. Drag on a Sphere.

2.3. Drag Force on Nonspherical Particles.

2.4. Low Reynolds Number Particle Dynamics and Stokes’ Law.

2.5. Particle Motions in Electric Fields.

2.6. Quiescent and Perfect-Mix Batch Sedimentation.

2.7. Continuous Sedimentation Processes.

2.8. Inertial Forces on Particles and Stopping Distance.

2.9. Inertial Forces in Particle Flows.

2.10. Rotating Flows.

2.11. Centrifugation.

2.12. Summary.

Exercises.

References.

Bibliography.

3 Interactions of Small Charged Particles.

3.1. Introduction.

3.2. Importance of Surface.

3.3. Acquisition of Surface Charge.

3.4. Particle Size, Shape, and Polydispersity.

3.5. The Double Layer and Colloidal Stability.

3.6. The Schulze-Hardy Rule.

3.7. Electrophoresis and Zeta Potential.

3.8. Particle Collision and Fast Coagulation.

3.9. Slow Coagulation.

3.10. Summary.

Exercises.

References.

Bibliography.

4 Adsorption, Partitioning, and Interfaces.

4.1. Introduction.

4.2. Accumulation of Solutes at Interfaces.

4.3. Adsorption at Solid-Liquid and Solid-Gas Interfaces.

4.4. Adsorption Isotherms.

4.5. Linear Equilibrium Partitioning Between Two Phases.

4.6. Partitioning and Separation in Flow Systems.

4.7. Summary.

Exercises.

References.

Bibliography.

5 Basic Fluid Mechanics of Environmental Transport.

5.1. Introduction.

5.2. The Joy of Fluid Mechanics.

5.3. The Navier-Stokes Equations.

5.4. Fluid Statics and the Buoyancy Force.

5.5. Capillarity and Interfacial Tension.

5.6. The Modified Pressure and Free-Surface Flows.

5.7. Steady Unidirectional Circular Streamline Flows.

5.8. Fluid Shear Stresses and the Viscosity of Newtonian Fluids.

5.9. Slip Flow.

5.10. Field-Flow Fractionation.

5.11. Nonsteady Unidirectional Flows: Stokes' First Problem.

5.12. Low Reynolds Number Flows.

5.13. Ideal Fluids, Potential Flows, and Stream Functions.

5.14. The Bernoulli Equation.

5.15. Steady Viscous Momentum Boundary Layers.

5.16. Turbulent Flows.

5.17. Summary.

Exercises.

References.

Bibliography.

6 Diffusive Mass Transport.

6.1. Introduction.

6.2. Thermodynamics of Diffusion.

6.3. Fick’s First Law and General Diffusive Transport.

6.4. The Diffusion Coefficient.

6.5. Steady-State Diffusion Problems with No Overall Diffusive Mass Transfer.

6.6. Steady-State Mass Balances Over Differential Elements.

6.7. Fick’s Second Law and Nonsteady-State Diffusion.

6.8. Effective Diffusion Coefficients in Porous Media.

6.9. Hindered Diffusion.

6.10. When Chemicals Diffuse Against a Concentration Gradient.

6.11. Summary.

Exercises.

References.

Bibliography.

7 Convective Diffusion, Dispersion, and Mass Transfer.

7.1. Introduction and Simple Example of Convective Diffusion.

7.2. The Convective-Diffusion Equation.

7.3. Mass Transport in Steady Laminar Flow in a Cylindrical Tube.

7.4. Taylor-Aris Dispersion.

7.5. Turbulent Dispersion: The Lagrangian Approach.

7.6. Turbulent Dispersion: The Eulerian Approach.

7.7. Mass Transfer in Laminar Flow Along Reacting or Dissolving Solid Surfaces.

7.8. Mass-Transfer Coefficients, Models, and Correlations for Laminar and Turbulent Flows.

7.9. Interphase Mass Transport and Resistance Models.

7.10. Summary.

Exercises.

References.

8 Filtration and Mass Transport in Porous Media.

8.1. Introduction.

8.2. Porosity, Velocity, and Porous Media Continua.

8.3. Coefficients of Mechanical, Molecular, and Hydrodynamic Dispersion.

8.4. Porous Media Dispersion Equation in a Homogeneous Isotropic Medium.

8.5. Solution of the Dispersion Equation in an Infinite One-Dimensional Medium.

8.6. Analytical Chromatography.

8.7. Filtration.

8.8. Osmotic Pressure and Reverse Osmosis.

8.9. Summary.

Exercises.

References.

Bibliography.

9 Reaction Kinetics.

9.1. Introduction.

9.2. First-Order Reactions.

9.3. Second-Order Reactions.

9.4. Pseudo-First-Order Reactions.

9.5. Zero-Order Reactions.

9.6. Elementary and Nonelementary Reactions.

9.7. Simple Series and Parallel Reactions.

9.8. Reversible Reactions.

9.9. Characteristic Reaction Times.

9.10. Arrhenius' Law and the Effect of Temperature on Reaction Rate.

9.11. The Fastest Reactions: Diffusion-Controlled Reactions.

9.12. Summary.

Exercises.

References.

Bibliography.

10 Mixing and Reactor Modeling.

10.1. Introduction.

10.2. Simple Closed-Reactor and Residence-Time Distributions.

10.3. Measurement of Residence-Time Distributions.

10.4. Residence-Time Distributions from Discrete Data.

10.5. Perfect Mixing and Ideal Plug Flow.

10.6. F, W, and Disinfection.

10.7. Moments of Residence-Time Distributions.

10.8. Other Residence-Time Models.

10.9. Axial-Dispersion Model.

10.10. Fitting Residence-Time Distributions to Data.

10.11. Mixing and Reactions.

10.12. Summary.

Exercises.

References.

Bibliography.

Appendix I. S I Units and Physical Constants.

Bibliography.

Appendix II. Review of Vectors.

Bibliography.

Appendix III. Equations of Fluid Mechanics and Convective Diffusion in Rectangular, Cylindrical, and Spherical Coordinates.

Bibliography.

Appendix IV. Physical Properties of Water and Air.

Bibliography.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)