Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems

Hardcover (Print)
Buy New
Buy New from BN.com
Used and New from Other Sellers
Used and New from Other Sellers
from $93.80
Usually ships in 1-2 business days
(Save 10%)
Other sellers (Hardcover)
  • All (10) from $93.80   
  • New (7) from $93.80   
  • Used (3) from $136.79   


This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra-energy-efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra-energy-efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practicing engineers.
Read More Show Less

Editorial Reviews

From the Publisher
"Professor Sarpeshkar's textbook from MIT provides an excellent overview of ten key fundamental principles related to ultra low power circuit and system design. Examples of many practical, experimental micro-power systems in cardiac, neural, and other medical-electronics applications make the text highly useful. Practitioners in this field will gain insight from his system-level analysis, which is presented at a level deeper than that found in most texts. In fact, the focus on systems thinking and connections made to a diverse set of problems - natural and man-made, from medical implants, to cells, to low-power cars - truly sets this book apart."
Dr. Tim Denison, Medtronic Fellow

"This truly interdisciplinary book is about much more than circuits. It contains the most comprehensive and deep treatment I have seen of the interplay and parallels between biology and circuits, and of how one discipline can inform the other. The comparisons between analog, digital, and biological implementations are fundamental and highly valuable. The breadth of the book is unique, ranging from feedback and antennas to battery chemistry."
Yannis Tsividis, Columbia University

"Sarpeshkar's focus on modeling cells as analog rather than digital circuits offers a new approach that will expand the frontiers of synthetic biology. Rahul has nicely laid a foundation that many of us in synthetic biology will be able to build on."
James Collins, Boston University

Read More Show Less

Product Details

  • ISBN-13: 9780521857277
  • Publisher: Cambridge University Press
  • Publication date: 3/31/2010
  • Edition description: New Edition
  • Pages: 908
  • Sales rank: 1,394,265
  • Product dimensions: 7.30 (w) x 10.10 (h) x 2.50 (d)

Meet the Author

Rahul Sarpeshkar leads a research group on bioelectronics at the Massachusetts Institute of Technology (MIT), where he has been a professor since 1999. This book is based on material from a course that Professor Sarpeshkar has taught at MIT for 10 years, where he has received both the Junior Bose Award and the Ruth and Joel Spira Award for excellence in teaching. He has won several awards for his interdisciplinary bioengineering research including the Packard Fellow Award given to outstanding faculty.
Read More Show Less

Table of Contents

Part I. Foundations: Ten chapters lay a foundation in device physics, noise, and feedback systems including nano scales in a highly original fashion, emphasizing intuitive thinking. This foundation is important in designing and analyzing ultra-low-power systems in both electronics and biology; Part II. Low-Power Analog and Biomedical Circuits: Five chapters present building-block circuits that are useful for ultra-low-power biomedical electronics and analog electronic systems in general; Part III. Low-Power RF and Energy-Harvesting Circuits for Biomedical Systems: Three chapters provide an in-depth description of energy-efficient power and data radio-frequency (RF) links that are fundamental to biomedical systems; Part IV. Biomedical Electronic Systems: Two chapters provide an in-depth look at ultra-low-power implantable electronics and ultra-low-power noninvasive electronics for biomedical applications, respectively. Case studies for cochlear implants for the deaf, brain implants for the blind and paralyzed, wearable cardiac devices, and biomolecular sensing are provided; Part V. Principles for Ultra-Low-Power Analog and Digital Design: Two chapters discuss principles for ultra-low-power digital design and ultra-low-power analog and mixed-signal design, respectively. The chapters identify ten fundamental principles that are common in both biology and electronics, analog and digital design; Part VI. Bio-Inspired Systems: A chapter on neuromorphic electronics discusses electronics inspired by neurobiology followed by a chapter that discusses a novel form of electronics termed Cytomorphic Electronics, electronics inspired by cell biology. These chapters discuss applications of bio-inspired systems to engineering and medicine, deep connections between chemistry and electronics, and provide a unifying viewpoint of ultra-low-power design in biology and in electronics; Part VII. Energy Sources: A chapter on batteries and electrochemistry discusses how batteries work from a unique circuit viewpoint. The last chapter discusses energy harvesting in biomedical systems at portable scales (vibration and body heat) and at larger scales (low-power cars and solar cells). Principles of low-power design are shown to extend from small scales in electronics to larger scales and to non-electrical systems. This book reveals the deep connections between energy use and energy generation, vital for sustainable energy systems of the future.
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)