Variational, Topological, and Partial Order Methods with Their Applications
Nonlinear functional analysis is an important branch of contemporary mathematics. It's related to topology, ordinary differential equations, partial differential equations, groups, dynamical systems, differential geometry, measure theory, and more. In this book, the author presents some new and interesting results on fundamental methods in nonlinear functional analysis, namely variational, topological and partial order methods, which have been used extensively to solve existence of solutions for elliptic equations, wave equations, Schrödinger equations, Hamiltonian systems etc., and are also used to study the existence of multiple solutions and properties of solutions. This book is useful for researchers and graduate students in the field of nonlinear functional analysis.

1110465004
Variational, Topological, and Partial Order Methods with Their Applications
Nonlinear functional analysis is an important branch of contemporary mathematics. It's related to topology, ordinary differential equations, partial differential equations, groups, dynamical systems, differential geometry, measure theory, and more. In this book, the author presents some new and interesting results on fundamental methods in nonlinear functional analysis, namely variational, topological and partial order methods, which have been used extensively to solve existence of solutions for elliptic equations, wave equations, Schrödinger equations, Hamiltonian systems etc., and are also used to study the existence of multiple solutions and properties of solutions. This book is useful for researchers and graduate students in the field of nonlinear functional analysis.

109.99 In Stock
Variational, Topological, and Partial Order Methods with Their Applications

Variational, Topological, and Partial Order Methods with Their Applications

by Zhitao Zhang
Variational, Topological, and Partial Order Methods with Their Applications

Variational, Topological, and Partial Order Methods with Their Applications

by Zhitao Zhang

Paperback(2013)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Nonlinear functional analysis is an important branch of contemporary mathematics. It's related to topology, ordinary differential equations, partial differential equations, groups, dynamical systems, differential geometry, measure theory, and more. In this book, the author presents some new and interesting results on fundamental methods in nonlinear functional analysis, namely variational, topological and partial order methods, which have been used extensively to solve existence of solutions for elliptic equations, wave equations, Schrödinger equations, Hamiltonian systems etc., and are also used to study the existence of multiple solutions and properties of solutions. This book is useful for researchers and graduate students in the field of nonlinear functional analysis.


Product Details

ISBN-13: 9783642427152
Publisher: Springer Berlin Heidelberg
Publication date: 10/15/2014
Series: Developments in Mathematics , #29
Edition description: 2013
Pages: 332
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

1 Preliminaries.- Sobolev spaces and embedding theorems.- Critical point.- Cone and partial order.- Brouwer Degree.- Compact map and Leray-Schauder Degree.- Fredholm operators.- Fixed point index.- Banach's Contract Theorem, Implicit Functions Theorem.- Krein-Rutman theorem.- Bifurcation theory.- Rearrangements of sets and functions.- Genus and Category.- Maximum principles and symmetry of solution.- Comparison theorems.- 2 Cone and Partial Order Methods.- Increasing operators.- Decreasing operators.- Mixed monotone operators.- Applications of mixed monotone operators.- Further results on cones and partial order methods.- 3 Minimax Methods.- Mountain Pass Theorem and Minimax Principle.- Linking Methods.- Local linking Methods.- 4 Bifurcation and Critical Point.- Introduction.- Main results with parameter.- Equations without the parameter.- 5 Solutions of a Class of Monge-Ampère Equations.- Introduction.- Moving plane argument.- Existence and non-existence results.- Bifurcation and the equation with a parameter.- Appendix.- 6 Topological Methods and Applications.- Superlinear system of integral equations and applications.- Existence of positive solutions for a semilinear elliptic system.- 7 Dancer-Fučik Spectrum.- The spectrum of a self-adjoint operator.- Dancer-Fučik Spectrum on bounded domains.- Dancer-Fučik point spectrum on RN.- Dancer-Fučik spectrum and asymptotically linear elliptic problems.- 8 Sign-changing Solutions.- Sign-changing solutions for superlinear Dirichlet problems.- Sign-changing solutions for jumping nonlinear problems.- 9 Extension of Brezis-Nirenberg's Results and Quasilinear Problems.- Introduction.- W01,p(Ω) versus C01(Ω) local minimizers.- Multiplicity results for the quasilinear problems.- Uniqueness results.- 10 Nonlocal Kirchhoff Elliptic Problems.- Introduction.- Yang index and critical groups to nonlocal problems.-Variational methods and invariant sets of descent flow.- Uniqueness of solution for a class of Kirchhoff-type equations.- 11 Free Boundary Problems, System of equations for Bose-Einstein Condensate and Competing Species.- Competing system with many species.- Optimal partition problems.- Schrödinger systems from Bose-Einstein condensate.- Bibliography.
From the B&N Reads Blog

Customer Reviews