Vector Integration and Stochastic Integration in Banach Spaces / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$162.69
Used and New from Other Sellers
Used and New from Other Sellers
from $68.75
Usually ships in 1-2 business days
(Save 66%)
Other sellers (Hardcover)
  • All (11) from $68.75   
  • New (5) from $171.30   
  • Used (6) from $68.75   

Overview

A breakthrough approach to the theory and applications of stochastic integration The theory of stochastic integration has become an intensely studied topic in recent years, owing to its extraordinarily successful application to financial mathematics, stochastic differential equations, and more. This book features a new measure theoretic approach to stochastic integration, opening up the field for researchers in measure and integration theory, functional analysis, probability theory, and stochastic processes. World-famous expert on vector and stochastic integration in Banach spaces Nicolae Dinculeanu compiles and consolidates information from disparate journal articles-including his own results-presenting a comprehensive, up-to-date treatment of the theory in two major parts. He first develops a general integration theory, discussing vector integration with respect to measures with finite semivariation, then applies the theory to stochastic integration in Banach spaces. Vector Integration and Stochastic Integration in Banach Spaces goes far beyond the typical treatment of the scalar case given in other books on the subject. Along with such applications of the vector integration as the Reisz representation theorem and the Stieltjes integral for functions of one or two variables with finite semivariation, it explores the emergence of new classes of summable processes that make applications possible, including square integrable martingales in Hilbert spaces and processes with integrable variation or integrable semivariation in Banach spaces. Numerous references to existing results supplement this exciting, breakthrough work.

Read More Show Less

Editorial Reviews

From the Publisher
"...an important tool...gives the newest results in this field...shows an important application of vector integration..." (Bulletin of the Belgian Mathematical Society, Vol 11(1), 2004)

"...it can be expected that...just like the author's 1967 volume, this book will stimulate further research on vector stochastic integration and can serve as a graduate-level reference work." (Mathematical Reviews Issue 2001h)

"Dense, detailed, comprehensive introduction. Contains...material only found before in journals..." (American Mathematical Monthly, March 2002)

“…a highly technical book.” (The Mathematical Gazette, March 2002)

"The author of this important and interesting book is a well-known specialist on vector measures." (Zentralblatt Math, Vol.974, No. 24 2001)

Mathematical Reviews
...it can be expected that...just like the author's 1967 volume, this book will stimulate further research on vector stochastic integration and can serve as a graduate-level reference work.
Mathematical Reviews
...it can be expected that...just like the author's 1967 volume, this book will stimulate further research on vector stochastic integration and can serve as a graduate-level reference work.
Booknews
Presents a new measure theoretic approach to stochastic integration, opening up the field for researchers in measure and integration theory, functional analysis, probability theory, and stochastic processes. First develops a general integration theory, discussing vector integration with respect to measures with finite semivariation, then applies the theory to stochastic integration in Banach spaces. Explores the emergence of new classes of summable processes that make applications possible, including square integrable martingales in Hilbert spaces and processes with integrable variation or semivariation in banach spaces. Dinculeanu teaches mathematics at the University of Florida-Gainesville. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Read More Show Less

Product Details

Table of Contents

Vector Integration.

The Stochastic Integral.

Martingales.

Processes with Finite Variation.

Processes with Finite Semivariation.

The It? Formula.

Stochastic Integration in the Plane.

Two-Parameter Martingales.

Two-Parameter Processes with Finite Variation.

Two-Parameter Processes with Finite Semivariation.

References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)