Vibrations and Waves / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $74.51
Usually ships in 1-2 business days
(Save 56%)
Other sellers (Hardcover)
  • All (7) from $74.51   
  • New (5) from $74.51   
  • Used (2) from $164.74   

Overview

This introductory text emphasises physical principles, rather than the mathematics. Each topic begins with a discussion of the physical characteristics of the motion or system. The mathematics is kept as clear as possible, and includes elegant mathematical descriptions where possible. Designed to provide a logical development of the subject, the book is divided into two sections, vibrations followed by waves. A particular feature is the inclusion of many examples, frequently drawn from everyday life, along with more cutting-edge ones. Each chapter includes problems ranging in difficulty from simple to challenging and includes hints for solving problems. Numerous worked examples included throughout the book.

Read More Show Less

Editorial Reviews

From the Publisher
"Each chapter is accompanied by a set of problems that form an important part of the book. The book could be used by undergraduate students taking a course in oscillation or wave physics." (Zentralblatt MATH, 2010)

"The text concisely describes vibrations and waves through mathematical equations with an emphasis on their physical meaning." (Outrider, January 2010)

Read More Show Less

Product Details

  • ISBN-13: 9780470011881
  • Publisher: Wiley
  • Publication date: 7/21/2009
  • Series: Manchester Physics Series
  • Edition number: 1
  • Pages: 242
  • Product dimensions: 6.80 (w) x 9.80 (h) x 0.80 (d)

Read an Excerpt

Click to read or download

Read More Show Less

Table of Contents

Editors' Preface to the Manchester Physics Series xi

Author's Preface xiii

1 SIMPLE HARMONIC MOTION 1

1.1 Physical Characteristics of Simple Harmonic Oscillators 1

1.2 A Mass on a Spring 2

1.2.1 A mass on a horizontal spring 2

1.2.2 A mass on a vertical spring 5

1.2.3 Displacement, velocity and acceleration in simple harmonic motion 5

1.2.4 General solutions for simple harmonic motion and the phase angle φ 7

1.2.5 The energy of a simple harmonic oscillator 10

1.2.6 The physics of small vibrations 12

1.3 The Pendulum 17

1.3.1 The simple pendulum 17

1.3.2 The energy of a simple pendulum 19

1.3.3 The physical pendulum 22

1.3.4 Numerical solution of simple harmonic motion3 24

1.4 Oscillations in Electrical Circuits: Similarities in Physics 27

1.4.1 The LC circuit 27

1.4.2 Similarities in physics 29

PROBLEMS 1 29

2 THE DAMPED HARMONIC OSCILLATOR 33

2.1 Physical Characteristics of the Damped Harmonic Oscillator 33

2.2 The Equation of Motion for a Damped Harmonic Oscillator 34

2.2.1 Light damping 35

2.2.2 Heavy damping 37

2.2.3 Critical damping 38

2.3 Rate of Energy Loss in a Damped Harmonic Oscillator 41

2.3.1 The quality factor Q of a damped harmonic oscillator 43

2.4 Damped Electrical Oscillations 46

PROBLEMS 2 47

3 FORCED OSCILLATIONS 49

3.1 Physical Characteristics of Forced Harmonic Motion 50

3.2 The Equation of Motion of a Forced Harmonic Oscillator 50

3.2.1 Undamped forced oscillations 50

3.2.2 Forced oscillations with damping 54

3.3 Power Absorbed During Forced Oscillations 60

3.4 Resonance in Electrical Circuits 64

3.5 Transient Phenomena 66

3.6 The Complex Representation of Oscillatory Motion 68

3.6.1 Complex numbers 68

3.6.2 The use of complex numbers to represent physical quantities 71

3.6.3 Use of the complex representation for forced oscillations with damping 74

PROBLEMS 3 74

4 COUPLED OSCILLATORS 77

4.1 Physical Characteristics of Coupled Oscillators 77

4.2 Normal Modes of Oscillation 78

4.3 Superposition of Normal Modes 81

4.4 Oscillating Masses Coupled by Springs 87

4.5 Forced Oscillations of Coupled Oscillators 93

4.6 Transverse Oscillations 96

PROBLEMS 4 99

5 TRAVELLING WAVES 105

5.1 Physical Characteristics of Waves 106

5.2 Travelling Waves 106

5.2.1 Travelling sinusoidal waves 109

5.3 The Wave Equation 112

5.4 The Equation of a Vibrating String 114

5.5 The Energy in a Wave 116

5.6 The Transport of Energy by a Wave 119

5.7 Waves at Discontinuities 121

5.8 Waves in Two and Three Dimensions 126

5.8.1 Waves of circular or spherical symmetry 130

PROBLEMS 5 133

6 STANDING WAVES 137

6.1 Standing Waves on a String 137

6.2 Standing Waves as the Superposition of Two Travelling Waves 144

6.3 The Energy in a Standing Wave 147

6.4 Standing Waves as Normal Modes of a Vibrating String 149

6.4.1 The superposition principle 149

6.4.2 The superposition of normal modes 150

6.4.3 The amplitudes of normal modes and Fourier analysis 153

6.4.4 The energy of vibration of a string 156

PROBLEMS 6 158

7 INTERFERENCE AND DIFFRACTION OF WAVES 161

7.1 Interference and Huygen’s Principle 161

7.1.1 Young’s double-slit experiment 163

7.1.2 Michelson spectral interferometer 170

7.2 Diffraction 172

7.2.1 Diffraction at a single slit 172

7.2.2 Circular apertures and angular resolving power 177

7.2.3 Double slits of finite width 179

PROBLEMS 7 181

8 THE DISPERSION OF WAVES 183

8.1 The Superposition of Waves in Non-Dispersive Media 183

8.1.1 Beats 184

8.1.2 Amplitude modulation of a radio wave 186

8.2 The Dispersion of Waves 187

8.2.1 Phase and group velocities 188

8.3 The Dispersion Relation 192

8.4 Wave Packets 195

8.4.1 Formation of a wave packet 197

PROBLEMS 8 201

APPENDIX: SOLUTIONS TO PROBLEMS 205

Index 223

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)