Video Registration
Traditionally, scientific fields have defined boundaries, and scientists work on research problems within those boundaries. However, from time to time those boundaries get shifted or blurred to evolve new fields. For instance, the original goal of computer vision was to understand a single image of a scene, by identifying objects, their structure, and spatial arrangements. This has been referred to as image understanding. Recently, computer vision has gradually been making the transition away from understanding single images to analyz­ ing image sequences, or video understanding. Video understanding deals with understanding of video sequences, e. g. , recognition of gestures, activities, fa­ cial expressions, etc. The main shift in the classic paradigm has been from the recognition of static objects in the scene to motion-based recognition of actions and events. Video understanding has overlapping research problems with other fields, therefore blurring the fixed boundaries. Computer graphics, image processing, and video databases have obvious overlap with computer vision. The main goal of computer graphics is to gener­ ate and animate realistic looking images, and videos. Researchers in computer graphics are increasingly employing techniques from computer vision to gener­ ate the synthetic imagery. A good example of this is image-based rendering and modeling techniques, in which geometry, appearance, and lighting is de­ rived from real images using computer vision techniques. Here the shift is from synthesis to analysis followed by synthesis.
1101307279
Video Registration
Traditionally, scientific fields have defined boundaries, and scientists work on research problems within those boundaries. However, from time to time those boundaries get shifted or blurred to evolve new fields. For instance, the original goal of computer vision was to understand a single image of a scene, by identifying objects, their structure, and spatial arrangements. This has been referred to as image understanding. Recently, computer vision has gradually been making the transition away from understanding single images to analyz­ ing image sequences, or video understanding. Video understanding deals with understanding of video sequences, e. g. , recognition of gestures, activities, fa­ cial expressions, etc. The main shift in the classic paradigm has been from the recognition of static objects in the scene to motion-based recognition of actions and events. Video understanding has overlapping research problems with other fields, therefore blurring the fixed boundaries. Computer graphics, image processing, and video databases have obvious overlap with computer vision. The main goal of computer graphics is to gener­ ate and animate realistic looking images, and videos. Researchers in computer graphics are increasingly employing techniques from computer vision to gener­ ate the synthetic imagery. A good example of this is image-based rendering and modeling techniques, in which geometry, appearance, and lighting is de­ rived from real images using computer vision techniques. Here the shift is from synthesis to analysis followed by synthesis.
109.99 In Stock
Video Registration

Video Registration

Video Registration

Video Registration

Hardcover(2003)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Traditionally, scientific fields have defined boundaries, and scientists work on research problems within those boundaries. However, from time to time those boundaries get shifted or blurred to evolve new fields. For instance, the original goal of computer vision was to understand a single image of a scene, by identifying objects, their structure, and spatial arrangements. This has been referred to as image understanding. Recently, computer vision has gradually been making the transition away from understanding single images to analyz­ ing image sequences, or video understanding. Video understanding deals with understanding of video sequences, e. g. , recognition of gestures, activities, fa­ cial expressions, etc. The main shift in the classic paradigm has been from the recognition of static objects in the scene to motion-based recognition of actions and events. Video understanding has overlapping research problems with other fields, therefore blurring the fixed boundaries. Computer graphics, image processing, and video databases have obvious overlap with computer vision. The main goal of computer graphics is to gener­ ate and animate realistic looking images, and videos. Researchers in computer graphics are increasingly employing techniques from computer vision to gener­ ate the synthetic imagery. A good example of this is image-based rendering and modeling techniques, in which geometry, appearance, and lighting is de­ rived from real images using computer vision techniques. Here the shift is from synthesis to analysis followed by synthesis.

Product Details

ISBN-13: 9781402074608
Publisher: Springer US
Publication date: 05/31/2003
Series: The International Series in Video Computing , #5
Edition description: 2003
Pages: 257
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

1 Video Registration: A Perspective.- 2 Automatic Camera Tracking.- 3 Motion Information in the Phase Domain.- 4 Parallel-Perspective Stereo Mosaics.- 5 Model-Based Landmark Extraction and Correspondence Finding for Aerial Image Registration.- 6 Airborne Video Registration for Activity Monitoring.- 7 Geodetic Alignment of Aerial Video Frames.- 8 Robust Video Georegistration.- 9 Video Registration Panel: Key Challenges and the potential impact of their solution to the field of computer vision.- 10 Index.
From the B&N Reads Blog

Customer Reviews