Virtual Topology and Functor Geometry
Intrinsically noncommutative spaces today are considered from the perspective of several branches of modern physics, including quantum gravity, string theory, and statistical physics. From this point of view, it is ideal to devise a concept of space and its geometry that is fundamentally noncommutative. Providing a clear introduction to noncommutative topology, Virtual Topology and Functor Geometry explores new aspects of these areas as well as more established facets of noncommutative algebra.

Presenting the material in an easy, colloquial style to facilitate understanding, the book begins with an introduction to category theory, followed by a chapter on noncommutative spaces. This chapter examines noncommutative lattices, noncommutative opens, sheaf theory, the generalized Stone space, and Grothendieck topology. The author then studies Grothendieck categorical representations to formulate an abstract notion of "affine open". The final chapter proposes a dynamical version of topology and sheaf theory, providing at least one solution of the problem of sheafification independent of generalizations of topos theory.

By presenting new ideas for the development of an intrinsically noncommutative geometry, this book fosters the further unification of different kinds of noncommutative geometry and the expression of observations that involve natural phenomena.
1128432680
Virtual Topology and Functor Geometry
Intrinsically noncommutative spaces today are considered from the perspective of several branches of modern physics, including quantum gravity, string theory, and statistical physics. From this point of view, it is ideal to devise a concept of space and its geometry that is fundamentally noncommutative. Providing a clear introduction to noncommutative topology, Virtual Topology and Functor Geometry explores new aspects of these areas as well as more established facets of noncommutative algebra.

Presenting the material in an easy, colloquial style to facilitate understanding, the book begins with an introduction to category theory, followed by a chapter on noncommutative spaces. This chapter examines noncommutative lattices, noncommutative opens, sheaf theory, the generalized Stone space, and Grothendieck topology. The author then studies Grothendieck categorical representations to formulate an abstract notion of "affine open". The final chapter proposes a dynamical version of topology and sheaf theory, providing at least one solution of the problem of sheafification independent of generalizations of topos theory.

By presenting new ideas for the development of an intrinsically noncommutative geometry, this book fosters the further unification of different kinds of noncommutative geometry and the expression of observations that involve natural phenomena.
250.0 In Stock
Virtual Topology and Functor Geometry

Virtual Topology and Functor Geometry

by Fred Van Oystaeyen
Virtual Topology and Functor Geometry

Virtual Topology and Functor Geometry

by Fred Van Oystaeyen

Hardcover

$250.00 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Intrinsically noncommutative spaces today are considered from the perspective of several branches of modern physics, including quantum gravity, string theory, and statistical physics. From this point of view, it is ideal to devise a concept of space and its geometry that is fundamentally noncommutative. Providing a clear introduction to noncommutative topology, Virtual Topology and Functor Geometry explores new aspects of these areas as well as more established facets of noncommutative algebra.

Presenting the material in an easy, colloquial style to facilitate understanding, the book begins with an introduction to category theory, followed by a chapter on noncommutative spaces. This chapter examines noncommutative lattices, noncommutative opens, sheaf theory, the generalized Stone space, and Grothendieck topology. The author then studies Grothendieck categorical representations to formulate an abstract notion of "affine open". The final chapter proposes a dynamical version of topology and sheaf theory, providing at least one solution of the problem of sheafification independent of generalizations of topos theory.

By presenting new ideas for the development of an intrinsically noncommutative geometry, this book fosters the further unification of different kinds of noncommutative geometry and the expression of observations that involve natural phenomena.

Product Details

ISBN-13: 9781138430297
Publisher: Taylor & Francis
Publication date: 07/27/2017
Series: Lecture Notes in Pure and Applied Mathematics
Pages: 168
Product dimensions: 6.12(w) x 9.19(h) x (d)

Table of Contents

Foreword. Introduction. Projects. A Taste of Category Theory. Noncommutative Spaces. Grothendieck Categorical Representations. Sheaves and Dynamical Topology. Bibliography. Index.
From the B&N Reads Blog

Customer Reviews