Visualization, Explanation and Reasoning Styles in Mathematics
In the 20th century philosophy of mathematics has to a great extent been dominated by views developed during the so-called foundational crisis in the beginning of that century. These views have primarily focused on questions pertaining to the logical structure of mathematics and questions regarding the justification and consistency of mathematics. Paradigmatic in this - spect is Hilbert’s program which inherits from Frege and Russell the project to formalize all areas of ordinary mathematics and then adds the requi- ment of a proof, by epistemically privileged means (finitistic reasoning), of the consistency of such formalized theories. While interest in modified v- sions of the original foundational programs is still thriving, in the second part of the twentieth century several philosophers and historians of mat- matics have questioned whether such foundational programs could exhaust the realm of important philosophical problems to be raised about the nature of mathematics. Some have done so in open confrontation (and hostility) to the logically based analysis of mathematics which characterized the cl- sical foundational programs, while others (and many of the contributors to this book belong to this tradition) have only called for an extension of the range of questions and problems that should be raised in connection with an understanding of mathematics. The focus has turned thus to a consideration of what mathematicians are actually doing when they produce mathematics. Questions concerning concept-formation, understanding, heuristics, changes instyle of reasoning, the role of analogies and diagrams etc.
1101001623
Visualization, Explanation and Reasoning Styles in Mathematics
In the 20th century philosophy of mathematics has to a great extent been dominated by views developed during the so-called foundational crisis in the beginning of that century. These views have primarily focused on questions pertaining to the logical structure of mathematics and questions regarding the justification and consistency of mathematics. Paradigmatic in this - spect is Hilbert’s program which inherits from Frege and Russell the project to formalize all areas of ordinary mathematics and then adds the requi- ment of a proof, by epistemically privileged means (finitistic reasoning), of the consistency of such formalized theories. While interest in modified v- sions of the original foundational programs is still thriving, in the second part of the twentieth century several philosophers and historians of mat- matics have questioned whether such foundational programs could exhaust the realm of important philosophical problems to be raised about the nature of mathematics. Some have done so in open confrontation (and hostility) to the logically based analysis of mathematics which characterized the cl- sical foundational programs, while others (and many of the contributors to this book belong to this tradition) have only called for an extension of the range of questions and problems that should be raised in connection with an understanding of mathematics. The focus has turned thus to a consideration of what mathematicians are actually doing when they produce mathematics. Questions concerning concept-formation, understanding, heuristics, changes instyle of reasoning, the role of analogies and diagrams etc.
109.99 In Stock
Visualization, Explanation and Reasoning Styles in Mathematics

Visualization, Explanation and Reasoning Styles in Mathematics

Visualization, Explanation and Reasoning Styles in Mathematics

Visualization, Explanation and Reasoning Styles in Mathematics

Hardcover(2005)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

In the 20th century philosophy of mathematics has to a great extent been dominated by views developed during the so-called foundational crisis in the beginning of that century. These views have primarily focused on questions pertaining to the logical structure of mathematics and questions regarding the justification and consistency of mathematics. Paradigmatic in this - spect is Hilbert’s program which inherits from Frege and Russell the project to formalize all areas of ordinary mathematics and then adds the requi- ment of a proof, by epistemically privileged means (finitistic reasoning), of the consistency of such formalized theories. While interest in modified v- sions of the original foundational programs is still thriving, in the second part of the twentieth century several philosophers and historians of mat- matics have questioned whether such foundational programs could exhaust the realm of important philosophical problems to be raised about the nature of mathematics. Some have done so in open confrontation (and hostility) to the logically based analysis of mathematics which characterized the cl- sical foundational programs, while others (and many of the contributors to this book belong to this tradition) have only called for an extension of the range of questions and problems that should be raised in connection with an understanding of mathematics. The focus has turned thus to a consideration of what mathematicians are actually doing when they produce mathematics. Questions concerning concept-formation, understanding, heuristics, changes instyle of reasoning, the role of analogies and diagrams etc.

Product Details

ISBN-13: 9781402033346
Publisher: Springer Netherlands
Publication date: 06/01/2005
Series: Synthese Library , #327
Edition description: 2005
Pages: 300
Product dimensions: 6.14(w) x 9.13(h) x 0.03(d)

Table of Contents

Mathematical Reasoning and Visualization.- Visualization in Logic and Mathematics.- From Symmetry Perception to Basic Geometry.- Naturalism, Pictures, and Platonic Intuitions.- Mathematical Activity.- Mathematical Explanation and Proof Styles.- Tertium Non Datur: On Reasoning Styles in Early Mathematics.- The Interplay Between Proof and Algorithm in 3rd Century China: The Operation as Prescription of Computation and the Operation as Argumento.- Proof Style and Understanding in Mathematics I: Visualization, Unification and Axiom Choice.- The Varieties of Mathematical Explanation.- The Aesthetics of Mathematics: A Study.
From the B&N Reads Blog

Customer Reviews