Water-Resources Engineering / Edition 3

Hardcover (Print)
Rent
Rent from BN.com
$41.49
(Save 81%)
Est. Return Date: 09/27/2014
Buy Used
Buy Used from BN.com
$130.12
(Save 39%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $127.49
Usually ships in 1-2 business days
(Save 40%)
Other sellers (Hardcover)
  • All (15) from $127.49   
  • New (8) from $158.55   
  • Used (7) from $127.49   

Overview


Water-Resources Engineering provides comprehensive coverage of hydraulics, hydrology, and water-resources planning and management. Presented from first principles, the material is rigorous, relevant to the practice of water resources engineering, and reinforced by detailed presentations of design applications. Prior knowledge of fluid mechanics and calculus (up to differential equations) is assumed.
Read More Show Less

Editorial Reviews

Booknews
Chin (civil and environmental engineering, U. of Miami) presents beginning undergraduate students with a picture of water-resources engineering that integrates fundamental concepts of fluid mechanics, water treatment processes, hydraulics, hydrology, and contaminant fate and transport processes. He incorporates and explains the core design principles of water distribution, sanitary sewer, stormwater management, and water-quality control systems. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Read More Show Less

Product Details

  • ISBN-13: 9780132833219
  • Publisher: Prentice Hall
  • Publication date: 10/18/2012
  • Edition description: New Edition
  • Edition number: 3
  • Pages: 960
  • Sales rank: 869,514
  • Product dimensions: 8.10 (w) x 10.10 (h) x 1.40 (d)

Read an Excerpt

PREFACE:

Preface

Water-resources engineering is concerned with the design of systems that control the quantity, quality, timing, and distribution of water to support both human habitation and the needs of the environment. Water-resources engineers are typically trained in civil or environmental engineering programs and specialize in a variety of areas, including the design of water-supply systems, water and wastewater treatment facilities, irrigation and drainage systems, hydropower systems, and flood-control systems.

The technical and scientific bases for most water-resources specializations are found in the areas of fluid mechanics, hydraulics, hydrology, contaminant fate and transport processes, and water-treatment processes. Many engineering schools classify watertreatment processes as a subject that belongs to environmental engineering rather than water-resources engineering; however, a holistic view of the practice of waterresources engineering supports the study of water-treatment processes as part of both water-resources and environmental engineering specialties. The pigeonholing of fluid mechanics, hydraulics, hydrology, and contaminant fate and transport into discrete subjects, usually taught in separate courses using different textbooks, has resulted in large part from the extensive knowledge base that has developed in each of these areas and the commensurate specialization of engineers involved in research and academic practice. Engineering students are consequently left with a sense of compartmentalization and intimidation. Typically, they fail to see the complete picture of water-resources engineering and view each specialty as so vast thatmastery at the undergraduate level is impossible. To address this misperception, an integrated treatment of water-resources engineering must necessarily present the fundamental aspects of the field while providing sufficient detail for the student to feel comfortable and competent in all the areas covered. Such an integrated approach has been taken in preparing this text, resulting in a book that covers the topics most fundamental to the practicing water-resources engineer— and does so with sufficient rigor that further instruction, whether at the graduate level or in professional journals, can be assimilated at a high technical level.

A course in fluid mechanics is generally regarded as the first step in a water-resources engineering track, and criteria for accrediting civil and environmental engineering programs in the United States (ABET Engineering Criteria 2000) require at most that engineering students demonstrate a proficiency in fluid mechanics relevant to their program of study. This book covers the elements of fluid mechanics relevant to a waterresources engineering track as well as the fundamentals of fluid mechanics covered on the Fundamentals of Engineering (FE) exam. The majority of this book provides detailed treatment of hydraulics, surface-water hydrology, ground-water hydrology, and hydrologic fate and transport processes, and it features practical design applications in all of these areas. The text incorporates, and explains in detail, the design of water distribution systems, sanitary sewer systems, stormwater management systems, and water-quality control systems in rivers, lakes, ground waters, and coastal waters. Care has been taken that all the design protocols presented in this book are consistent with the relevant American Society of Civil Engineers (ASCE), Water Environment Federation (WET), and American Water Works Association (AWWA) Manuals of Practice.

The topics covered in this book constitute much of the technical background expected of water-resources engineers and part of the core requirements for environmental engineering students. This text is appropriate for undergraduate and first-year graduate courses in hydraulics, hydrology, and contaminant fate and transport processes. It also incorporates enough fluid mechanics background to rigorously cover the fundamentals of hydraulics and hydrology. Prerequisites for courses that use this text should include calculus up to differential equations.

The book begins with an introduction to water-resources engineering (Chapter 1) that orients the reader to the depth and breadth of the field. Chapter 2 covers the fundamentals of classical fluid mechanics relevant to water-resources engineering, and Chapter 3 presents the fundamentals of flow in closed conduits, including a detailed exposition on the design of water-supply systems. Chapter 4 covers flow in open channels from basic principles, including the computation of watersurface profiles and the performance of hydraulic structures. Applications of this material to the design of lined, unlined, and grassed drainage channels are presented along with the design of sanitary sewer systems. Computer models commonly used in practice to apply the principles of open-channel hydraulics are reviewed at the end of the chapter.

Many of the analytical methods used by water-resources engineers are based in the theory of probability and statistics, and Chapter 5 presents elements of probability and statistics relevant to the practice of water-resources engineering. Useful probability distributions, hydrologic data analysis, and frequency analysis are all covered, and the applications of these techniques to risk analysis in engineering design are illustrated by examples. Chapter 6 covers surface-water hydrology and focuses mostly on urban design applications. The ASCE Manuals of Practice on the design of surface-water management systems (ASCE,1992) and urban runoff quality management (ASCE, 1998) were used as bases for much of the material presented. Coverage includes the specification of design rainfall, runoff models, routing models, and water-quality models. Applications of this material to the design of both minor and major components of stormwater management systems are presented, along with computer models widely used in practice to implement these techniques in complex stormwater management systems.

Chapter 7 covers ground-water hydrology, including the basic equations of groundwater flow, analytic solutions describing flow in aquifers, saltwater intrusion, and ground-water flow in the unsaturated zone. Applications to the design of municipal wellfields and individual water-supply wells, the delineation of wellhead protection areas, the design of aquifer pumping tests, and the design of exfiltration trenches are presented. Numerical models of ground-water flow used in practice are also reviewed. Chapter 8, finally, covers hydrologic fate and transport processes, including waterquality regulations, and quantitative analyses of fate and transport processes in rivers, lakes, ground waters, and coastal waters. The applications of these analyses to the design of water-quality management systems are presented. Seven appendices at the end of the book include conversion factors between SI and U.S. Customary units, fluid properties, geometric properties of plane surfaces, statistical tables, special functions, and drinking water standards.

This book can be used in a variety of ways, depending on the needs of students and instructors. As a guideline, the material in this text could be substantially covered in a two-course sequence. The first course could cover the material in Chapters 1 through 5 (Introduction, Fundamentals of Fluid Mechanics, Flow in Closed Conduits, Flow in Open Channels, Probability and Statistics in Water-Resources Engineering); the second, Chapters 6 through 8 (Surface-Water Hydrology, Ground-Water Hydrology, Hydrologic Fate and Transport Processes). A course plan that complements other required courses in the engineering curriculum is generally recommended.

In summary, this book is a reflection of the author's belief that water-resources engineers must have a firm understanding of the depth and breadth of the technical areas fundamental to their discipline. This knowledge will allow them to be more innovative, view water-resource systems holistically, and be technically prepared for a lifetime of learning. On the basis of this vision, the material contained in this book is presented mostly from first principles, is rigorous, is relevant to the practice of water-resources engineering, and is reinforced by detailed presentations of design applications.

Even though the United States is squarely on the road to adopting International Standard (SI) units, most textbooks in hydraulics and hydrology published in this country continue to use the system of U.S. Customary units. Providing a mix of units can sometimes be confusing and usually forces the reader to adopt one set and ignore the other. Unfortunately, many engineering students tend to adopt the U.S. Customary unit system and disregard the SI system. If they are to be competitive in the future, American engineers cannot afford this luxury. Therefore, this textbook preferentially uses SI units.

Many people have contributed both directly and indirectly to the creation of this book. I acknowledge the many inspirational teachers who kindled my interest in waterresources engineering and whose philosophical ideas have contributed to development of my present view of the field. To name only a few people would be a disservice to many, but the faculty I studied under at Caltech and Georgia Tech during my graduate school days certainly deserve special recognition. My students in the civil and environmental engineering programs at the University of Miami provided valuable feedback in the development of this book, and Michael Slaughter of Addison-Wesley was a source of advice and help. I would like to join with the publisher in thanking the following reviewers for their comments and suggestions during the development of the manuscript: Mary Bergs, University of Toledo; Paul C. Chan, New Jersey Institute of Technology; Alexander Cheng, University of Delaware; Steven Chiesa, Santa Clara University; Bruce DeVantier, Southern Illinois University-Carbondale; Robert Kersten, University of Central Florida; Jay Lund, University of California, Davis; Joe Middlebrooks, University of Nevada, Reno; Paul Trotta, Northern Arizona University; and Ralph Wurbs, Texas A&M University. A special thanks to Bob Liu, who drafted most of the figures, and whose dedication to this project was beyond the call of duty.

David A. Chin

Read More Show Less

Table of Contents

Preface xv
1 Introduction 1
1.1 Water-Resources Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Hydrologic Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Design of Water-Resource Systems . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Water-Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Water-Use Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Supporting Federal Agencies in the United States . . . . . . . . . . 7
Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Fundamentals of Flow in Closed Conduits 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Single Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Steady-State Continuity Equation . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Steady-State Momentum Equation . . . . . . . . . . . . . . . . . . . 10
2.2.3 Steady-State Energy Equation . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3.1 Energy and hydraulic grade lines . . . . . . . . . . . . . . . 25
2.2.3.2 Velocity profile . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3.3 Head losses in transitions and fittings . . . . . . . . . . . . 27
2.2.3.4 Head losses in non circular conduits . . . . . . . . . . . . . 31
2.2.3.5 Empirical friction-loss formulae . . . . . . . . . . . . . . . 32
2.2.4 Water Hammer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Pipe Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Nodal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Loop Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.3 Application of Computer Programs . . . . . . . . . . . . . . . . . . . 46
2.4 Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.1 Affinity Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.2 Pump Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.2.1 Commercially available pumps . . . . . . . . . . . . . . . . 53
2.4.2.2 System characteristics . . . . . . . . . . . . . . . . . . . . . 54
2.4.2.3 Limits on pump location . . . . . . . . . . . . . . . . . . . . 55
2.4.3 Multiple-Pump Systems . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.4 Variable-Speed Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Design of Water-Distribution Systems 70

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Water Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.1 Per-Capita Forecast Model . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.1.1 Estimation of per-capita demand . . . . . . . . . . . . . . . 71
3.2.1.2 Estimation of population . . . . . . . . . . . . . . . . . . . 72
3.2.2 Temporal Variations in Water Demand . . . . . . . . . . . . . . . . . 76
3.2.3 Fire Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.4 Design Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 Components of Water-Distribution Systems . . . . . . . . . . . . . . . . . . 81
3.3.1 Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.1.1 Minimum size . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.1.2 Service lines . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.1.3 Pipe materials . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.2 Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.3 Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.4 Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.5 Fire Hydrants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.6 Water-Storage Reservoirs . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4 Performance Criteria for Water-Distribution Systems . . . . . . . . . . . . . 90
3.4.1 Service Pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.2 Allowable Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.3 Water Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.4 Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5 Building Water-Supply Systems . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5.1 Specification of Design Flows . . . . . . . . . . . . . . . . . . . . . . 94
3.5.2 Specification of Minimum Pressures . . . . . . . . . . . . . . . . . . 94
3.5.3 Determination of Pipe Diameters . . . . . . . . . . . . . . . . . . . . 96
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Fundamentals of Flow in Open Channels 103
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.1 Steady-State Continuity Equation . . . . . . . . . . . . . . . . . . . . 103
4.2.2 Steady-State Momentum Equation . . . . . . . . . . . . . . . . . . . 104
4.2.2.1 Darcy–Weisbach equation . . . . . . . . . . . . . . . . . . . 106
4.2.2.2 Manning equation . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.2.3 Other equations . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.2.4 Velocity distribution . . . . . . . . . . . . . . . . . . . . . . 120
4.2.3 Steady-State Energy Equation . . . . . . . . . . . . . . . . . . . . . . 121
4.2.3.1 Energy grade line . . . . . . . . . . . . . . . . . . . . . . . 125
4.2.3.2 Specific energy . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.3 Water-Surface Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.3.1 Profile Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.3.2 Classification of Water-Surface Profiles . . . . . . . . . . . . . . . . . 134
4.3.3 Hydraulic Jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.3.4 Computation of Water-Surface Profiles . . . . . . . . . . . . . . . . . 143
4.3.4.1 Direct-integration method . . . . . . . . . . . . . . . . . . 145
4.3.4.2 Direct-step method . . . . . . . . . . . . . . . . . . . . . . 147
4.3.4.3 Standard-step method . . . . . . . . . . . . . . . . . . . . . 148
4.3.4.4 Practical considerations . . . . . . . . . . . . . . . . . . . . 150
4.3.4.5 Profiles across bridges . . . . . . . . . . . . . . . . . . . . . 154
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5 Design of Drainage Channels 166

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2.1 Best Hydraulic Section . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2.2 Boundary Shear Stress . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.2.3 Cohesive versus Non cohesive Materials . . . . . . . . . . . . . . . . 172
5.2.4 Bends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.2.5 Channel Slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.2.6 Freeboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.3 Design of Channels with Rigid Linings . . . . . . . . . . . . . . . . . . . . . 180
5.4 Design of Channels with Flexible Linings . . . . . . . . . . . . . . . . . . . . 182
5.4.1 General Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . 183
5.4.2 Vegetative Linings and Bare Soil . . . . . . . . . . . . . . . . . . . . 187
5.4.3 RECP Linings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.4.4 Riprap, Cobble, and Gravel Linings . . . . . . . . . . . . . . . . . . . 199
5.4.5 Gabions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.5 Composite Linings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6 Design of Sanitary Sewers 211
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.2 Quantity of Wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.2.1 Residential Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.2.2 Nonresidential Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.2.3 Inflow and Infiltration (I/I) . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2.4 Peaking Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.3 Hydraulics of Sewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.3.1 Manning Equation with Constant n . . . . . . . . . . . . . . . . . . . 218
6.3.2 Manning Equation with Variable n . . . . . . . . . . . . . . . . . . . 220
6.3.3 Self-Cleansing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.3.4 Scour Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.3.5 Design Computations for Diameter and Slope . . . . . . . . . . . . . 224
6.3.6 Hydraulics of Manholes . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.4 System Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.4.1 System Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.4.2 Pipe Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.4.3 Depth of Sanitary Sewer . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.4.4 Diameter and Slope of Pipes . . . . . . . . . . . . . . . . . . . . . . . 231
6.4.5 Hydraulic Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.4.6 Manholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.4.7 Pump Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.4.8 Force Mains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.4.9 Hydrogen-Sulfide Control . . . . . . . . . . . . . . . . . . . . . . . . 234
6.4.10 Combined Sewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.5 Design Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.5.1 Design Aids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.5.1.1 Manning’s n . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.5.1.2 Minimum slope for self-cleansing . . . . . . . . . . . . . . 237
6.5.2 Procedure for System Design . . . . . . . . . . . . . . . . . . . . . . 240
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

7 Design of Hydraulic Structures 250
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.2 Culverts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.2.1 Hydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.2.1.1 Submerged entrances . . . . . . . . . . . . . . . . . . . . . 252
7.2.1.2 Unsubmerged entrances . . . . . . . . . . . . . . . . . . . . 259
7.2.2 Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
7.2.3 Sizing Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.2.3.1 Fixed-headwater method . . . . . . . . . . . . . . . . . . . 265
7.2.3.2 Fixed-flow method . . . . . . . . . . . . . . . . . . . . . . . 269
7.2.3.3 Minimum-performance method . . . . . . . . . . . . . . . 271
7.2.4 Roadway Overtopping . . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.2.5 Riprap/Outlet Protection . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.3 Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
7.3.1 Free Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
7.3.2 Submerged Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.3.3 Empirical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.4 Weirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.4.1 Sharp-Crested Weirs . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.4.1.1 Rectangular weirs . . . . . . . . . . . . . . . . . . . . . . . 282

7.4.1.2 V-notch weirs . . . . . . . . . . . . . . . . . . . . . . . . . . 288

7.4.1.3 Compound weirs . . . . . . . . . . . . . . . . . . . . . . . . 291

7.4.1.4 Other types of sharp-crested weirs . . . . . . . . . . . . . . 293

7.4.2 Broad-Crested Weirs . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

7.4.2.1 Rectangular weirs . . . . . . . . . . . . . . . . . . . . . . . 294

7.4.2.2 Compound weirs . . . . . . . . . . . . . . . . . . . . . . . . 297

7.4.2.3 Gabion weirs . . . . . . . . . . . . . . . . . . . . . . . . . . 298

7.5 Spillways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

7.5.1 Uncontrolled Spillways . . . . . . . . . . . . . . . . . . . . . . . . . . 299

7.5.2 Controlled (Gated) Spillways . . . . . . . . . . . . . . . . . . . . . . 307

7.5.2.1 Gates seated on the spillway crest . . . . . . . . . . . . . . 308

7.5.2.2 Gates seated downstream of the spillway crest . . . . . . . 309

7.6 Stilling Basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

7.6.1 Type Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

7.6.2 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

7.7 Dams and Reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

7.7.1 Types of Dams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

7.7.2 Reservoir Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

7.7.2.1 Sediment accumulation . . . . . . . . . . . . . . . . . . . . 323

7.7.2.2 Determination of storage requirements . . . . . . . . . . . 326

7.7.3 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

7.7.3.1 Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

7.7.3.2 Turbine performance . . . . . . . . . . . . . . . . . . . . . 333

7.7.3.3 Feasibility of hydropower . . . . . . . . . . . . . . . . . . . 334

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

8 Probability and Statistics in Water-Resources Engineering 344

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

8.2 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

8.2.1 Discrete Probability Distributions . . . . . . . . . . . . . . . . . . . . 345

8.2.2 Continuous Probability Distributions . . . . . . . . . . . . . . . . . . 346

8.2.3 Mathematical Expectation and Moments . . . . . . . . . . . . . . . 347

8.2.4 Return Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

8.2.5 Common Probability Functions . . . . . . . . . . . . . . . . . . . . . 351

8.2.5.1 Binomial distribution . . . . . . . . . . . . . . . . . . . . . 351

8.2.5.2 Geometric distribution . . . . . . . . . . . . . . . . . . . . 353

8.2.5.3 Poisson distribution . . . . . . . . . . . . . . . . . . . . . . 354

8.2.5.4 Exponential distribution . . . . . . . . . . . . . . . . . . . . 356

8.2.5.5 Gamma/Pearson Type III distribution . . . . . . . . . . . . 357

8.2.5.6 Normal distribution . . . . . . . . . . . . . . . . . . . . . . 360

8.2.5.7 Log-normal distribution . . . . . . . . . . . . . . . . . . . . 362

8.2.5.8 Uniform distribution . . . . . . . . . . . . . . . . . . . . . . 363

8.2.5.9 Extreme-value distributions . . . . . . . . . . . . . . . . . . 364

8.2.5.10 Chi-square distribution . . . . . . . . . . . . . . . . . . . . 371

8.3 Analysis of Hydrologic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

8.3.1 Estimation of Population Distribution . . . . . . . . . . . . . . . . . 372

8.3.1.1 Probability distribution of observed data . . . . . . . . . . 372

8.3.1.2 Hypothesis tests . . . . . . . . . . . . . . . . . . . . . . . . 376

8.3.1.3 Model selection criteria . . . . . . . . . . . . . . . . . . . . 379

8.3.2 Estimation of Population Parameters . . . . . . . . . . . . . . . . . . 379

8.3.2.1 Method of moments . . . . . . . . . . . . . . . . . . . . . . 379

8.3.2.2 Maximum-likelihood method . . . . . . . . . . . . . . . . . 382

8.3.2.3 Method of L-moments . . . . . . . . . . . . . . . . . . . . . 383

8.3.3 Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

8.3.3.1 Normal distribution . . . . . . . . . . . . . . . . . . . . . . 388

8.3.3.2 Log-normal distribution . . . . . . . . . . . . . . . . . . . . 389

8.3.3.3 Gamma/Pearson Type III distribution . . . . . . . . . . . . 390

8.3.3.4 Log-Pearson Type III distribution . . . . . . . . . . . . . . 391

8.3.3.5 Extreme-value Type I distribution . . . . . . . . . . . . . . 393

8.3.3.6 General extreme-value (GEV) distribution . . . . . . . . . 394

8.4 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

9 Fundamentals of Surface-Water Hydrology I: Rainfall and Abstractions 401

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

9.2 Rainfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

9.2.1 Measurement of Rainfall . . . . . . . . . . . . . . . . . . . . . . . . . 403

9.2.2 Statistics of Rainfall Data . . . . . . . . . . . . . . . . . . . . . . . . 405

9.2.2.1 Rainfall statistics in the United States . . . . . . . . . . . . 410

9.2.2.2 Secondary estimation of IDF curves . . . . . . . . . . . . . 410

9.2.3 Spatial Averaging and Interpolation of Rainfall . . . . . . . . . . . . 416

9.2.4 Design Rainfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

9.2.4.1 Return period . . . . . . . . . . . . . . . . . . . . . . . . . 421

9.2.4.2 Rainfall duration . . . . . . . . . . . . . . . . . . . . . . . . 422

9.2.4.3 Rainfall depth . . . . . . . . . . . . . . . . . . . . . . . . . 422

9.2.4.4 Temporal distribution . . . . . . . . . . . . . . . . . . . . . 422

9.2.4.5 Spatial distribution . . . . . . . . . . . . . . . . . . . . . . . 428

9.2.5 Extreme Rainfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

9.2.5.1 Rational estimation method . . . . . . . . . . . . . . . . . 430

9.2.5.2 Statistical estimation method . . . . . . . . . . . . . . . . . 430

9.2.5.3 World-record precipitation amounts . . . . . . . . . . . . . 432

9.2.5.4 Probable maximum storm . . . . . . . . . . . . . . . . . . . 432

9.3 Rainfall Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

9.3.1 Interception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

9.3.2 Depression Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

9.3.3 Infiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

9.3.3.1 The infiltration process . . . . . . . . . . . . . . . . . . . . 439

9.3.3.2 Horton model . . . . . . . . . . . . . . . . . . . . . . . . . 442

9.3.3.3 Green—Ampt model . . . . . . . . . . . . . . . . . . . . . . 447

9.3.3.4 NRCS curve-number model . . . . . . . . . . . . . . . . . 453

9.3.3.5 Comparison of infiltration models . . . . . . . . . . . . . . 460

9.3.4 Rainfall Excess on Composite Areas . . . . . . . . . . . . . . . . . . 461

9.4 Baseflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

10 Fundamentals of Surface-Water Hydrology II: Runoff 473

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

10.2 Mechanisms of Surface Runoff . . . . . . . . . . . . . . . . . . . . . . . . . . 473

10.3 Time of Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

10.3.1 Overland Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

10.3.1.1 Kinematic-wave equation . . . . . . . . . . . . . . . . . . . 474

10.3.1.2 NRCS method . . . . . . . . . . . . . . . . . . . . . . . . . 478

10.3.1.3 Kirpich equation . . . . . . . . . . . . . . . . . . . . . . . . 481

10.3.1.4 Izzard equation . . . . . . . . . . . . . . . . . . . . . . . . . 481

10.3.1.5 Kerby equation . . . . . . . . . . . . . . . . . . . . . . . . . 482

10.3.2 Channel Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

10.3.3 Accuracy of Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 486

10.4 Peak-Runoff Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

10.4.1 The Rational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

10.4.2 NRCS-TR55 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

10.5 Continuous-Runoff Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

10.5.1 Unit-Hydrograph Theory . . . . . . . . . . . . . . . . . . . . . . . . 495

10.5.2 Instantaneous Unit Hydrograph . . . . . . . . . . . . . . . . . . . . . 501

10.5.3 Unit-Hydrograph Models . . . . . . . . . . . . . . . . . . . . . . . . 502

10.5.3.1 Snyder unit-hydrograph model . . . . . . . . . . . . . . . . 503

10.5.3.2 NRCS dimensionless unit hydrograph . . . . . . . . . . . . 506

10.5.3.3 Accuracy of unit-hydrograph models . . . . . . . . . . . . 509

10.5.4 Time-Area Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

10.5.5 Kinematic-Wave Model . . . . . . . . . . . . . . . . . . . . . . . . . 514

10.5.6 Nonlinear-Reservoir Model . . . . . . . . . . . . . . . . . . . . . . . 515

10.5.7 Santa Barbara Urban Hydrograph Model . . . . . . . . . . . . . . . 517

10.5.8 Extreme Runoff Events . . . . . . . . . . . . . . . . . . . . . . . . . 519

10.6 Routing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

10.6.1 Hydrologic Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

10.6.1.1 Modified Pulsmethod . . . . . . . . . . . . . . . . . . . . . 520

10.6.1.2 Muskingum method . . . . . . . . . . . . . . . . . . . . . . 524

10.6.2 Hydraulic Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

10.7 Water-Quality Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

10.7.1 Event-Mean Concentrations . . . . . . . . . . . . . . . . . . . . . . . 533

10.7.2 Regression Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 535

10.7.2.1 USGS model . . . . . . . . . . . . . . . . . . . . . . . . . . 535

10.7.2.2 EPA model . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

11 Design of Stormwater-Collection Systems 545

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

11.2 Street Gutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

11.3 Inlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

11.3.1 Curb Inlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

11.3.2 Grate Inlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

11.3.3 Combination Inlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

11.3.4 Slotted Inlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

11.4 Roadside and Median Channels . . . . . . . . . . . . . . . . . . . . . . . . . 566

11.5 Storm Sewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

11.5.1 Calculation of Design Flow Rates . . . . . . . . . . . . . . . . . . . . 568

11.5.2 Pipe Sizing and Selection . . . . . . . . . . . . . . . . . . . . . . . . . 571

11.5.3 Manholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

11.5.4 Determination of Impervious Area . . . . . . . . . . . . . . . . . . . 577

11.5.5 System-Design Computations . . . . . . . . . . . . . . . . . . . . . . 578

11.5.6 Other Design Considerations . . . . . . . . . . . . . . . . . . . . . . 583

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

12 Design of Stormwater-Management Systems 586

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

12.2 Performance Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

12.2.1 Quantity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

12.2.2 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

12.3 Design of Stormwater Control Measures . . . . . . . . . . . . . . . . . . . . 587

12.3.1 Storage Impoundments . . . . . . . . . . . . . . . . . . . . . . . . . . 587

12.3.1.1 Detention basins–Design parameters . . . . . . . . . . . . 588

12.3.1.2 Wet detention basins . . . . . . . . . . . . . . . . . . . . . . 590

12.3.1.3 Dry detention basins . . . . . . . . . . . . . . . . . . . . . . 592

12.3.1.4 Design of outlet structures . . . . . . . . . . . . . . . . . . 593

12.3.1.5 Design for flood control . . . . . . . . . . . . . . . . . . . . 599

12.3.2 Infiltration Basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

12.3.3 Swales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

12.3.3.1 Retention wales . . . . . . . . . . . . . . . . . . . . . . . . 606

12.3.3.2 Biofiltration swales . . . . . . . . . . . . . . . . . . . . . . . 607

12.3.4 Vegetated Filter Strips . . . . . . . . . . . . . . . . . . . . . . . . . . 610

12.3.5 Bioretention Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

12.3.6 Exfiltration Trenches . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

12.3.6.1 General design guidelines . . . . . . . . . . . . . . . . . . . 613

12.3.6.2 Design for flood control . . . . . . . . . . . . . . . . . . . . 614

12.3.6.3 Design fo rwater-quality control . . . . . . . . . . . . . . . 616

12.3.7 Subsurface Exfiltration Galleries . . . . . . . . . . . . . . . . . . . . 617

12.4 Selection of SCMs for Water-Quality Control . . . . . . . . . . . . . . . . . 618

12.4.1 Nonstructura lSCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

12.4.2 Structural SCMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

12.4.3 Other Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

12.5 Major Drainage System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

13 Estimation of Evapotranspiration 624

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

13.2 Penman—Monteith Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

13.2.1 Aerodynamic Resistance . . . . . . . . . . . . . . . . . . . . . . . . . 625

13.2.2 Surface Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

13.2.3 Net Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

13.2.3.1 Shortwave radiation . . . . . . . . . . . . . . . . . . . . . . 627

13.2.3.2 Longwave radiation . . . . . . . . . . . . . . . . . . . . . . 629

13.2.4 Soil Heat Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

13.2.5 Latent Heat of Vaporization . . . . . . . . . . . . . . . . . . . . . . . 631

13.2.6 Psychrometric Constant . . . . . . . . . . . . . . . . . . . . . . . . . 631

13.2.7 Saturation Vapor Pressure . . . . . . . . . . . . . . . . . . . . . . . . 632

13.2.8 Vapor-Pressure Gradient . . . . . . . . . . . . . . . . . . . . . . . . . 632

13.2.9 Actual Vapor Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 632

13.2.10 Air Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

13.3 Application of the PM Equation . . . . . . . . . . . . . . . . . . . . . . . . . 634

13.4 Potential Evapotranspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

13.5 Reference Evapotranspiration . . . . . . . . . . . . . . . . . . . . . . . . . . 638

13.5.1 FAO56-Penman—Monteith Method . . . . . . . . . . . . . . . . . . . 639

13.5.2 ASCE Penman—Monteith Method . . . . . . . . . . . . . . . . . . . 643

13.5.3 Evaporation Pans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

13.5.4 Empirical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

13.6 Actual Evapotranspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

13.6.1 Index-of-Dryness Method . . . . . . . . . . . . . . . . . . . . . . . . 651

13.6.2 Crop-Coefficient Method . . . . . . . . . . . . . . . . . . . . . . . . 653

13.6.3 Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

13.7 Selection of ET Estimation Method . . . . . . . . . . . . . . . . . . . . . . . 654

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

14 Fundamentals of Groundwater Hydrology I: Governing Equations 656

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

14.2 Darcy’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

14.2.1 Hydraulic Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . 666

14.2.1.1 Empirical formulae . . . . . . . . . . . . . . . . . . . . . . 666

14.2.1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 670

14.2.1.3 Anisotropic properties . . . . . . . . . . . . . . . . . . . . . 670

14.2.1.4 Stochastic properties . . . . . . . . . . . . . . . . . . . . . . 674

14.3 General Flow Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676

14.4 Two-Dimensional Approximations . . . . . . . . . . . . . . . . . . . . . . . 681

14.4.1 Unconfined Aquifers . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

14.4.2 Confined Aquifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

14.5 Flow in the Unsaturated Zone Problems . . . . . . . . . . . 691

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

15 Fundamentals of Groundwater Hydrology II: Applications 700

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

15.2 Steady-State Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

15.2.1 Unconfined Flow Between Two Reservoirs . . . . . . . . . . . . . . 700

15.2.2 Well in a Confined Aquifer . . . . . . . . . . . . . . . . . . . . . . . 702

15.2.3 Well in an Unconfined Aquifer . . . . . . . . . . . . . . . . . . . . . 706

15.2.4 Well in a Leaky Confined Aquifer . . . . . . . . . . . . . . . . . . . . 709

15.2.5 Well in an Unconfined Aquifer with Recharge . . . . . . . . . . . . . 713

15.2.6 Partially Penetrating Wells . . . . . . . . . . . . . . . . . . . . . . . . 714

15.3 Unsteady-State Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

15.3.1 Well in a Confined Aquifer . . . . . . . . . . . . . . . . . . . . . . . 718

15.3.2 Well in an Unconfined Aquifer . . . . . . . . . . . . . . . . . . . . . 728

15.3.3 Well in a Leaky Confined Aquifer . . . . . . . . . . . . . . . . . . . . 736

15.3.4 Other Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

15.4 Principle of Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

15.4.1 Multiple Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

15.4.2 Well in Uniform Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 744

15.5 Method of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746

15.5.1 Constant-Head Boundary . . . . . . . . . . . . . . . . . . . . . . . . 746

15.5.2 Impermeable Boundary . . . . . . . . . . . . . . . . . . . . . . . . . 750

15.5.3 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

15.6 Saltwater Intrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

16 Design of Groundwater Systems 771

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

16.2 Design of Wellfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

16.3 Wellhead Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774

16.3.1 Delineation of Wellhead Protection Areas . . . . . . . . . . . . . . . 774

16.3.2 Time-of-Travel Approach . . . . . . . . . . . . . . . . . . . . . . . . 775

16.4 Design and Construction of Water-Supply Wells . . . . . . . . . . . . . . . . 777

16.4.1 Types of Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

16.4.2 Design of Well Components . . . . . . . . . . . . . . . . . . . . . . . 778

16.4.2.1 Casing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

16.4.2.2 Screen intake . . . . . . . . . . . . . . . . . . . . . . . . . . 779

16.4.2.3 Gravel pack . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

16.4.2.4 Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784

16.4.2.5 Other considerations . . . . . . . . . . . . . . . . . . . . . . 785

16.4.3 Performance Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 788

16.4.4 Well Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793

16.5 Design of Aquifer Pumping Tests . . . . . . . . . . . . . . . . . . . . . . . . 794

16.5.1 Pumping Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

16.5.2 Observation Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

16.5.3 Field Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796

16.6 Design of Slug Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798

16.7 Design of Exfiltration Trenches . . . . . . . . . . . . . . . . . . . . . . . . . 803

16.8 Seepage Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809

17 Water-Resources Planning 815

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815

17.2 Planning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815

17.3 Economic Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

17.3.1 Compound-Interest Factors . . . . . . . . . . . . . . . . . . . . . . . 819

17.3.1.1 Single-payment factors . . . . . . . . . . . . . . . . . . . . 819

17.3.1.2 Uniform-series factors . . . . . . . . . . . . . . . . . . . . . 820

17.3.1.3 Arithmetic-gradient factors . . . . . . . . . . . . . . . . . . 820

17.3.1.4 Geometric-gradient factors . . . . . . . . . . . . . . . . . . 821

17.3.2 Evaluating Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . 823

17.3.2.1 Present-worth analysis . . . . . . . . . . . . . . . . . . . . . 823

17.3.2.2 Annual-worth analysis . . . . . . . . . . . . . . . . . . . . . 825

17.3.2.3 Rate-of-return analysis . . . . . . . . . . . . . . . . . . . . 825

17.3.2.4 Benefit—cost analysis . . . . . . . . . . . . . . . . . . . . . . 828

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829

A Units and Conversion Factors 831

A.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

A.2 Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832

B Fluid Properties 834

B.1 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

B.2 Organic Compounds Found in Water . . . . . . . . . . . . . . . . . . . . . . 834

B.3 Air at Standard Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . 836

C Statistical Tables 837

C.1 Areas Under Standard Normal Curve . . . . . . . . . . . . . . . . . . . . . . 837

C.2 Frequency Factors for Pearson Type III Distribution . . . . . . . . . . . . . 839

C.3 Critical Values of the Chi-Square Distribution . . . . . . . . . . . . . . . . . 841

C.4 Critical Values for the Kolmogorov—Smirnov Test Statistic . . . . . . . . . . 842

D Special Functions 843

D.1 Error Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843

D.2 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844

D.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844

D.2.2 Evaluation of Bessel Functions . . . . . . . . . . . . . . . . . . . . . 844

D.2.2.1 Bessel function of the first kind of order n . . . . . . . . . . 844

D.2.2.2 Bessel function of the second kind of order n . . . . . . . . 845

D.2.2.3 Modified Bessel function of the first kind of order n . . . . 845

D.2.2.4 Modified Bessel function of the second kind of order n . . 845

D.2.2.5 Tabulated values of useful Bessel functions . . . . . . . . . 845

D.3 Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848

D.4 Exponential Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849

E Pipe Specifications 850

E.1 PVC Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

E.2 Ductile-Iron Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

E.3 Concrete Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851

E.4 Physical Properties of Common Pipe Materials . . . . . . . . . . . . . . . . 851

F Unified Soil Classification System 852

F.1 Definition of Soil Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

F.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

Bibliography 854

Index 912

Read More Show Less

Preface

PREFACE:

Preface

Water-resources engineering is concerned with the design of systems that control the quantity, quality, timing, and distribution of water to support both human habitation and the needs of the environment. Water-resources engineers are typically trained in civil or environmental engineering programs and specialize in a variety of areas, including the design of water-supply systems, water and wastewater treatment facilities, irrigation and drainage systems, hydropower systems, and flood-control systems.

The technical and scientific bases for most water-resources specializations are found in the areas of fluid mechanics, hydraulics, hydrology, contaminant fate and transport processes, and water-treatment processes. Many engineering schools classify watertreatment processes as a subject that belongs to environmental engineering rather than water-resources engineering; however, a holistic view of the practice of waterresources engineering supports the study of water-treatment processes as part of both water-resources and environmental engineering specialties. The pigeonholing of fluid mechanics, hydraulics, hydrology, and contaminant fate and transport into discrete subjects, usually taught in separate courses using different textbooks, has resulted in large part from the extensive knowledge base that has developed in each of these areas and the commensurate specialization of engineers involved in research and academic practice. Engineering students are consequently left with a sense of compartmentalization and intimidation. Typically, they fail to see the complete picture of water-resources engineering and view each specialty as so vastthatmastery at the undergraduate level is impossible. To address this misperception, an integrated treatment of water-resources engineering must necessarily present the fundamental aspects of the field while providing sufficient detail for the student to feel comfortable and competent in all the areas covered. Such an integrated approach has been taken in preparing this text, resulting in a book that covers the topics most fundamental to the practicing water-resources engineer— and does so with sufficient rigor that further instruction, whether at the graduate level or in professional journals, can be assimilated at a high technical level.

A course in fluid mechanics is generally regarded as the first step in a water-resources engineering track, and criteria for accrediting civil and environmental engineering programs in the United States (ABET Engineering Criteria 2000) require at most that engineering students demonstrate a proficiency in fluid mechanics relevant to their program of study. This book covers the elements of fluid mechanics relevant to a waterresources engineering track as well as the fundamentals of fluid mechanics covered on the Fundamentals of Engineering (FE) exam. The majority of this book provides detailed treatment of hydraulics, surface-water hydrology, ground-water hydrology, and hydrologic fate and transport processes, and it features practical design applications in all of these areas. The text incorporates, and explains in detail, the design of water distribution systems, sanitary sewer systems, stormwater management systems, and water-quality control systems in rivers, lakes, ground waters, and coastal waters. Care has been taken that all the design protocols presented in this book are consistent with the relevant American Society of Civil Engineers (ASCE), Water Environment Federation (WET), and American Water Works Association (AWWA) Manuals of Practice.

The topics covered in this book constitute much of the technical background expected of water-resources engineers and part of the core requirements for environmental engineering students. This text is appropriate for undergraduate and first-year graduate courses in hydraulics, hydrology, and contaminant fate and transport processes. It also incorporates enough fluid mechanics background to rigorously cover the fundamentals of hydraulics and hydrology. Prerequisites for courses that use this text should include calculus up to differential equations.

The book begins with an introduction to water-resources engineering (Chapter 1) that orients the reader to the depth and breadth of the field. Chapter 2 covers the fundamentals of classical fluid mechanics relevant to water-resources engineering, and Chapter 3 presents the fundamentals of flow in closed conduits, including a detailed exposition on the design of water-supply systems. Chapter 4 covers flow in open channels from basic principles, including the computation of watersurface profiles and the performance of hydraulic structures. Applications of this material to the design of lined, unlined, and grassed drainage channels are presented along with the design of sanitary sewer systems. Computer models commonly used in practice to apply the principles of open-channel hydraulics are reviewed at the end of the chapter.

Many of the analytical methods used by water-resources engineers are based in the theory of probability and statistics, and Chapter 5 presents elements of probability and statistics relevant to the practice of water-resources engineering. Useful probability distributions, hydrologic data analysis, and frequency analysis are all covered, and the applications of these techniques to risk analysis in engineering design are illustrated by examples. Chapter 6 covers surface-water hydrology and focuses mostly on urban design applications. The ASCE Manuals of Practice on the design of surface-water management systems (ASCE,1992) and urban runoff quality management (ASCE, 1998) were used as bases for much of the material presented. Coverage includes the specification of design rainfall, runoff models, routing models, and water-quality models. Applications of this material to the design of both minor and major components of stormwater management systems are presented, along with computer models widely used in practice to implement these techniques in complex stormwater management systems.

Chapter 7 covers ground-water hydrology, including the basic equations of groundwater flow, analytic solutions describing flow in aquifers, saltwater intrusion, and ground-water flow in the unsaturated zone. Applications to the design of municipal wellfields and individual water-supply wells, the delineation of wellhead protection areas, the design of aquifer pumping tests, and the design of exfiltration trenches are presented. Numerical models of ground-water flow used in practice are also reviewed. Chapter 8, finally, covers hydrologic fate and transport processes, including waterquality regulations, and quantitative analyses of fate and transport processes in rivers, lakes, ground waters, and coastal waters. The applications of these analyses to the design of water-quality management systems are presented. Seven appendices at the end of the book include conversion factors between SI and U.S. Customary units, fluid properties, geometric properties of plane surfaces, statistical tables, special functions, and drinking water standards.

This book can be used in a variety of ways, depending on the needs of students and instructors. As a guideline, the material in this text could be substantially covered in a two-course sequence. The first course could cover the material in Chapters 1 through 5 (Introduction, Fundamentals of Fluid Mechanics, Flow in Closed Conduits, Flow in Open Channels, Probability and Statistics in Water-Resources Engineering); the second, Chapters 6 through 8 (Surface-Water Hydrology, Ground-Water Hydrology, Hydrologic Fate and Transport Processes). A course plan that complements other required courses in the engineering curriculum is generally recommended.

In summary, this book is a reflection of the author's belief that water-resources engineers must have a firm understanding of the depth and breadth of the technical areas fundamental to their discipline. This knowledge will allow them to be more innovative, view water-resource systems holistically, and be technically prepared for a lifetime of learning. On the basis of this vision, the material contained in this book is presented mostly from first principles, is rigorous, is relevant to the practice of water-resources engineering, and is reinforced by detailed presentations of design applications.

Even though the United States is squarely on the road to adopting International Standard (SI) units, most textbooks in hydraulics and hydrology published in this country continue to use the system of U.S. Customary units. Providing a mix of units can sometimes be confusing and usually forces the reader to adopt one set and ignore the other. Unfortunately, many engineering students tend to adopt the U.S. Customary unit system and disregard the SI system. If they are to be competitive in the future, American engineers cannot afford this luxury. Therefore, this textbook preferentially uses SI units.

Many people have contributed both directly and indirectly to the creation of this book. I acknowledge the many inspirational teachers who kindled my interest in waterresources engineering and whose philosophical ideas have contributed to development of my present view of the field. To name only a few people would be a disservice to many, but the faculty I studied under at Caltech and Georgia Tech during my graduate school days certainly deserve special recognition. My students in the civil and environmental engineering programs at the University of Miami provided valuable feedback in the development of this book, and Michael Slaughter of Addison-Wesley was a source of advice and help. I would like to join with the publisher in thanking the following reviewers for their comments and suggestions during the development of the manuscript: Mary Bergs, University of Toledo; Paul C. Chan, New Jersey Institute of Technology; Alexander Cheng, University of Delaware; Steven Chiesa, Santa Clara University; Bruce DeVantier, Southern Illinois University-Carbondale; Robert Kersten, University of Central Florida; Jay Lund, University of California, Davis; Joe Middlebrooks, University of Nevada, Reno; Paul Trotta, Northern Arizona University; and Ralph Wurbs, Texas A&M University. A special thanks to Bob Liu, who drafted most of the figures, and whose dedication to this project was beyond the call of duty.

David A. Chin

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)