Wide Bandgap Semiconductor Spintronics
This book is focused on the spintronic properties of III–V nitride semiconductors. Particular attention is paid to the comparison between zinc blende GaAs- and wurtzite GaN-based structures, where the Rashba spin–orbit interaction plays a crucial role in voltage-controlled spin engineering. The book also deals with topological insulators, a new class of materials that could deliver sizable Rashba spin splitting in the surface electron spectrum. Electrically driven zero-magnetic-field spin splitting of surface electrons is discussed with respect to the specifics of electron-localized spin interaction and voltage-controlled ferromagnetism. The book covers generic topics in spintronics without entering into device specifics, since the overall goal of the enterprise is to provide theoretical background for most common concepts of spin-electron physics and give instructions to be used in solving problems of a general and specific nature. The book is intended for graduate students and may serve as an introductory course in this specific field of solid-state theory and applications.

1128366881
Wide Bandgap Semiconductor Spintronics
This book is focused on the spintronic properties of III–V nitride semiconductors. Particular attention is paid to the comparison between zinc blende GaAs- and wurtzite GaN-based structures, where the Rashba spin–orbit interaction plays a crucial role in voltage-controlled spin engineering. The book also deals with topological insulators, a new class of materials that could deliver sizable Rashba spin splitting in the surface electron spectrum. Electrically driven zero-magnetic-field spin splitting of surface electrons is discussed with respect to the specifics of electron-localized spin interaction and voltage-controlled ferromagnetism. The book covers generic topics in spintronics without entering into device specifics, since the overall goal of the enterprise is to provide theoretical background for most common concepts of spin-electron physics and give instructions to be used in solving problems of a general and specific nature. The book is intended for graduate students and may serve as an introductory course in this specific field of solid-state theory and applications.

160.0 In Stock
Wide Bandgap Semiconductor Spintronics

Wide Bandgap Semiconductor Spintronics

by Vladimir Litvinov
Wide Bandgap Semiconductor Spintronics

Wide Bandgap Semiconductor Spintronics

by Vladimir Litvinov

Hardcover

$160.00 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book is focused on the spintronic properties of III–V nitride semiconductors. Particular attention is paid to the comparison between zinc blende GaAs- and wurtzite GaN-based structures, where the Rashba spin–orbit interaction plays a crucial role in voltage-controlled spin engineering. The book also deals with topological insulators, a new class of materials that could deliver sizable Rashba spin splitting in the surface electron spectrum. Electrically driven zero-magnetic-field spin splitting of surface electrons is discussed with respect to the specifics of electron-localized spin interaction and voltage-controlled ferromagnetism. The book covers generic topics in spintronics without entering into device specifics, since the overall goal of the enterprise is to provide theoretical background for most common concepts of spin-electron physics and give instructions to be used in solving problems of a general and specific nature. The book is intended for graduate students and may serve as an introductory course in this specific field of solid-state theory and applications.


Product Details

ISBN-13: 9789814669702
Publisher: Jenny Stanford Publishing
Publication date: 03/02/2016
Pages: 196
Product dimensions: 6.00(w) x 9.00(h) x (d)

About the Author

Vladimir Litvinov is a principal scientist at Sierra Nevada Corporation, Irvine, California, since 1999. He holds PhD and Doctor of Science degrees in physics from Chernivtsi National University (Ukraine) and the Institute of Physics, Estonian Academy of Sciences (since 1996 Institute of Physics, University of Tartu), respectively. From 1978 to 1996, he was a member and then head of the theoretical lab at the Institute of Materials Science, National Academy of Sciences of Ukraine. From 1996 to 1999, he was a senior research associate at the Center of Quantum Devices, Electrical and Computer Engineering Department, Northwestern University, Evanston, Illinois. His research interests include solid-state and semiconductor physics, optoelectronic devices, spintronics, and millimeter-wave scanning antennas.

Table of Contents

GaN Band Structure. Rashba Hamiltonian. Rashba Spin Splitting in III–Nitride Heterostructures and Quantum Wells. Tunnel Spin Filter in Rashba Quantum Structures. Exchange Interaction in Semiconductors and Metals. Ferromagnetism in III–V Semiconductors. Topological Insulators. Magnetic Exchange Interaction in Topological Insulators.

From the B&N Reads Blog

Customer Reviews