Wing Theory-Incompressible Fluids

A high Reynolds number flow about a lifting wing typically forms a thin boundary layer on its surface, which smoothly merges with a thin vortical wake behind it. An asymptotic theory, based on wing’s thickness, camber, angle of attack and aspect ratio, can turn this simple observation into a fair approximation for the pressure loads acting on a finite wing in generally non-uniform motion. This book unfolds this theory step-by-step, revisiting a few well-known and some less-known results along the way. The fidelity of the approximation is demonstrated in numerous examples. The stress in the book is on mathematical rigor, and all non-trivial steps are scrutinized in numerous appendices. The book can be a basis for a graduate course on theoretical aerodynamics, but can also be a reference for quite a few practical aerodynamic models.

1146221950
Wing Theory-Incompressible Fluids

A high Reynolds number flow about a lifting wing typically forms a thin boundary layer on its surface, which smoothly merges with a thin vortical wake behind it. An asymptotic theory, based on wing’s thickness, camber, angle of attack and aspect ratio, can turn this simple observation into a fair approximation for the pressure loads acting on a finite wing in generally non-uniform motion. This book unfolds this theory step-by-step, revisiting a few well-known and some less-known results along the way. The fidelity of the approximation is demonstrated in numerous examples. The stress in the book is on mathematical rigor, and all non-trivial steps are scrutinized in numerous appendices. The book can be a basis for a graduate course on theoretical aerodynamics, but can also be a reference for quite a few practical aerodynamic models.

84.99 In Stock
Wing Theory-Incompressible Fluids

Wing Theory-Incompressible Fluids

by Gil Iosilevskii
Wing Theory-Incompressible Fluids

Wing Theory-Incompressible Fluids

by Gil Iosilevskii

eBook

$84.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

A high Reynolds number flow about a lifting wing typically forms a thin boundary layer on its surface, which smoothly merges with a thin vortical wake behind it. An asymptotic theory, based on wing’s thickness, camber, angle of attack and aspect ratio, can turn this simple observation into a fair approximation for the pressure loads acting on a finite wing in generally non-uniform motion. This book unfolds this theory step-by-step, revisiting a few well-known and some less-known results along the way. The fidelity of the approximation is demonstrated in numerous examples. The stress in the book is on mathematical rigor, and all non-trivial steps are scrutinized in numerous appendices. The book can be a basis for a graduate course on theoretical aerodynamics, but can also be a reference for quite a few practical aerodynamic models.


Product Details

ISBN-13: 9783031736254
Publisher: Springer-Verlag New York, LLC
Publication date: 04/10/2025
Sold by: Barnes & Noble
Format: eBook
File size: 26 MB
Note: This product may take a few minutes to download.

About the Author

Gil Iosilevskii is a professor at Technion—Israel Institute of Technology. His main research interests include aerodynamic theory of wings and bodies in unsteady motion, asymptotic wing theories, flight mechanics of fixed- and rotary-wing aircraft and animals aero- and hydro-dynamics.

Table of Contents

1.Introduction.- 2.Thick wing sections in steady motion.- 3.Thin wing sections in steady motion.- 4.Thin wing sections in non-uniform motion.- 5.Permeable membrane wings.- 6.Partially separated wake.- 7.Linearized theory of thin wings of finite span.- 8.High-aspect-ratio wings in steady motion.- 9.High-aspect-ratio wings in nonuniform motion.- 10.Drag, losses and the Trefftz plane.- 11.Low-aspect-ratio wings in nonuniform motion.

From the B&N Reads Blog

Customer Reviews