Introduction To Liquid State Physics

Introduction To Liquid State Physics

ISBN-10:
9810246528
ISBN-13:
9789810246525
Pub. Date:
08/19/2002
Publisher:
World Scientific Publishing Company, Incorporated
ISBN-10:
9810246528
ISBN-13:
9789810246525
Pub. Date:
08/19/2002
Publisher:
World Scientific Publishing Company, Incorporated
Introduction To Liquid State Physics

Introduction To Liquid State Physics

$81.0 Current price is , Original price is $81.0. You
$81.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

This important book provides an introduction to the liquid state. A qualitative description of liquid properties is first given, followed by detailed chapters on thermodynamics, liquid structure in relation to interaction forces and transport properties such as diffusion and viscosity. Treatment of complex fluids such as anisotropic liquid crystals and polymers, and of technically important topics such as non-Newtonian and turbulent flows, is included. Surface properties and characteristics of the liquid-vapour critical point are also discussed. While the book focuses on classical liquids, the final chapter deals with quantal fluids.

Product Details

ISBN-13: 9789810246525
Publisher: World Scientific Publishing Company, Incorporated
Publication date: 08/19/2002
Edition description: New Edition
Pages: 452
Product dimensions: 6.00(w) x 8.80(h) x 0.80(d)

Table of Contents

Prefacev
1Qualitative Description of Liquid Properties1
1.1Three Phases of Matter: pVT Behaviour of Pure Materials2
1.1.1Critical isotherm4
1.1.2Triple point4
1.1.3Phase diagram of a pure material (e.g. argon)5
1.1.4Phase change from gas to liquid6
1.1.5A liquid open to the atmosphere7
1.2Melting and Lindemann's Law8
1.3Molecular Thermal Movements in the Liquid Phase: Brownian Motion9
1.4Qualitative Considerations Continued: Flow Properties of Dense Liquids12
1.4.1Ideal liquids and Bernoulli's equation13
1.4.2Flow in real liquids: Introduction of viscosity15
1.4.3Poiseuille's formula: Viscous flow through a tube15
1.4.4Turbulence and Reynolds number16
1.5Rigidity of Liquids17
1.6Surface Properties18
1.6.1Surface free energy and surface tension18
1.6.2Surface energy versus surface free energy20
1.6.3Contact angle20
1.6.4Capillarity21
1.6.5Energy for capillary rise23
1.7Water and Ice Revisited24
2Excluded Volume, Free Volume and Hard Sphere Packing29
2.1Excluded Volume and Packing Problems29
2.2Accessible Configuration Space30
2.3Experiments on Random Packing Models31
2.4Origins of Method of Molecular Dynamics33
2.5Free-Volume Approximation36
2.6Free Volume and Entropically Driven Freezing Transition36
2.7Building on Hard Sphere Equation of State39
2.8Hard-Particle Fluid Equation of State Using Nearest-Neighbour Correlations41
2.9Free Volume Revisited in Hard Sphere Fluid42
2.9.1Statistical geometry of high-density fluid43
2.9.2Chemical potential in terms of statistical geometry44
2.10Hard Particles in Low Dimensions45
2.10.1Rods and disks46
2.10.2Hard ellipses46
2.11Equation of State of Hard-Body Fluids47
2.12Hard Sphere Fluid in Narrow Cylindrical Pores48
3Thermodynamics, Equipartition of Energy and Some Scaling Properties51
3.1Thermodynamic Functions for a Fluid51
3.1.1Thermodynamic identity and the first principle of thermodynamics53
3.1.2Helmholtz free energy and variational principle54
3.1.3Gibbs free energy56
3.2Specific Heats and Compressibilities56
3.2.1Specific heat at constant pressure57
3.2.2Specific heat properties of liquid metals near freezing58
3.2.3Compressibilities, both adiabatic and isothermal59
3.3Fluctuation Phenomena59
3.3.1Fluctuations in a perfect gas60
3.3.2Effect of intermolecular forces61
3.3.3Temperature fluctuations62
3.4Clausius-Clapeyron Equation and Melting62
3.5Free Energy from Partition Function64
3.6Principle of Equipartition of Energy67
3.6.1Internal energy and other thermodynamic functions of a perfect gas67
3.6.2Harmonic oscillator revisited68
3.7Thermodynamic and Other Properties of Hard Sphere Fluid68
3.8Scaling of Thermodynamic Properties for Inverse-Power Repulsive Potentials70
3.8.1Consequence for melting transition70
Appendix 3.1Analogues of the Clausius-Clapeyron Equation for Other Phase Transitions71
A3.1.1A magnetic system71
A3.1.2Higher-order phase transitions72
Appendix 3.2Partition Function, Phase Space and Configurational Integral for Inverse Power Repulsive Potentials73
4Structure, Forces and Thermodynamics75
4.1Pair Distribution Function g(r)75
4.2Definition of Liquid Structure Factor S(k)76
4.3Diffractive Scattering from a Liquid78
4.4Salient Features of Liquid Structure Factor79
4.4.1Long wavelength limit and connection with thermodynamic fluctuations79
4.4.2The Hansen-Verlet freezing criterion80
4.4.3Relation between the main features of the peak in the structure factor81
4.4.4Verlet's rule related to Lindemann's melting criterion83
4.5Internal Energy and Virial Equation of State with Pair Forces84
4.6Ornstein-Zernike Direct Correlation Function85
4.6.1Direct correlation function from Percus-Yevick theory for hard spheres87
4.6.2Softness corrections to the hard sphere potential90
4.6.3Small angle scattering from liquid argon near triple point91
4.7Thermodynamic Consistency and Structural Theories92
4.7.1Consistency of virial and fluctuation compressibility: Consequences for c(r)92
4.7.2A route to thermodynamic consistency in liquid-structure theory93
4.8Liquid-Vapour Critical Point95
4.8.1Critical constants for insulating fluids and expanded alkali metals95
4.8.2Ornstein-Zernike theory and critical exponents98
4.8.3Scaling relations99
4.8.4X-ray critical scattering from fluids100
4.9Fluids at Equilibrium in a Porous Medium101
Appendix 4.1Inhomogeneous Monatomic Fluids102
A4.1.1Equilibrium conditions103
A4.1.2Direct correlation function105
A4.1.3Hypernetted-chain approximation in liquid-structure theory106
Appendix 4.2The Dieterici Equation of State107
Appendix 4.3Force Equation and Born-Green Theory of Liquid Structure108
5Diffusion111
5.1Background: Magnitude of Diffusion Coefficients in Gases111
5.1.1Practical consequences of "slow" diffusion in dense liquids113
5.2Fick's Law and Diffusion Equation114
5.2.1Examples of diffusion across a thin film115
5.3Solute Diffusion at High Dilution in Water and in Non-aqueous Solvents116
5.3.1Stokes-Einstein and semiempirical estimates of solute diffusion116
5.4Summary of Techniques, Including Computer Simulation, for Determining118
5.4.1Incoherent neutron scattering119
5.4.2Dynamic light scattering121
5.4.3Nuclear magnetic resonance122
5.4.4Computer simulation of mean square displacement123
5.5Velocity Autocorrelation Function in Pure Dense Liquids125
5.5.1Frequency spectrum and long-time tails126
5.5.2The Nernst-Einstein relation129
5.6Models of Velocity Autocorrelation Function131
5.6.1The Zwanzig model132
5.6.2Wallace's independent atom model134
5.6.3Generalisation of Stokes-Einstein relation135
6Viscosity137
6.1Hydrodynamic Variables137
6.2Stresses in a Newtonian Fluid and the Navier-Stokes Equation139
6.2.1Viscosity stress tensor139
6.2.2Bulk and shear viscosity141
6.2.3The Navier-Stokes equation141
6.2.4Viscous dissipation142
6.3Laminar Flow and the Measurement of Shear Viscosity143
6.3.1Oscillating disk viscometer145
6.3.2Couette viscometer145
6.3.3Hydrodynamic lubrication146
6.4Creeping Flow Past an Obstacle146
6.4.1Stokes' law revisited147
6.4.2The viscosity of suspensions149
6.4.3Percolation150
6.5Vorticity150
6.5.1Vorticity diffusion151
6.5.2The Magnus force152
6.6Models of Viscosity152
6.6.1Shear and bulk viscosity of hard sphere fluid153
6.6.2Temperature dependence of shear viscosity155
6.6.3Green-Kubo formulae for viscosity156
6.6.4Computer simulation of shear viscosity in a Lennard-Jones fluid157
6.7Transverse Currents and Sound Propagation in Isothermal Conditions157
6.7.1Linearised Navier-Stokes equation157
6.7.2Bulk viscosity159
6.7.3Brillouin light scattering160
6.8Microscopic Density Fluctuations and Inelastic Scattering160
6.8.1Inelastic neutron scattering from liquids161
6.8.2Inelastic photon scattering from liquids165
6.8.3Fast sound in water167
Appendix 6.1Kinetic Calculation of Shear Viscosity for Hard Spheres168
7Heat Transport171
7.1Fourier's Law171
7.2Studies of Heat Conduction by Molecular Dynamics174
7.2.1Green-Kubo formula175
7.2.2Non-equilibrium methods176
7.2.3Transient time correlation formula176
7.3Electronic Contribution to Heat Conduction in Liquid Metals178
7.4Thermodynamics with Mass Motion and Entropy Production180
7.4.1Thermodynamic relations180
7.4.2Entropy production181
7.4.3Constitutive relations182
7.5The Effect of Heat Flow on Sound Wave Propagation183
7.5.1Hydrodynamic modes183
7.5.2Light scattering185
7.5.3Sound propagation in the critical region186
7.6Binary Fluids187
7.6.1Thermodiffusion187
7.6.2Hydrodynamic modes189
7.7Superfluid Helium189
7.7.1Transport properties of superfluid [superscript 4]He191
7.7.2Inelastic neutron scattering from superfluid [superscript 4]He193
Appendix 7.1Kinetic Theory of Thermal and Electrical Conductivity196
Appendix 7.2Hydrodynamics of Superfluid Helium in the Two-Fluid Model198
8Chemical Short-Range Order: Molten Salts and Some Metal Alloys201
8.1Classical One-Component Plasma: Static and Dynamic Screening201
8.1.1Debye screening202
8.1.2Dynamic screening and plasma excitation204
8.1.3Structure and dynamics of the strongly coupled OCP204
8.2Macroscopic Properties of Molten Salts205
8.2.1Selected macroscopic data for chlorides206
8.2.2Melting parameters207
8.2.3Alkali halide vapours and critical behaviour of ionic fluids208
8.3Structural Functions for Multicomponent Fluids209
8.3.1Number-concentration structure factors210
8.4Coulomb Ordering in Monohalides and Dihalides212
8.4.1Alkali halides212
8.4.2Noble-metal halides213
8.4.3Fluorite-type superionic conductors214
8.4.4Tetrahedral-network structure in ZnCl[subscript 2]214
8.5Structure of Trivalent-Metal Halides216
8.5.1Octahedral-network formation in lanthanide chlorides217
8.5.2Ionic-to-molecular melting in AlCl[subscript 3] and FeCl[subscript 3]217
8.5.3Liquid haloaluminates218
8.5.4Molecular-to-molecular melting in GaCl[subscript 3] and SbCl[subscript 3]218
8.6Transport and Dynamics in Molten Salts219
8.6.1Ionic transport219
8.6.2Viscosity221
8.6.3Dynamics of density fluctuations223
8.7Chemical Short-Range Order in Liquid Alloys224
8.7.1The CsAu compound224
8.7.2Other alkali-based alloys with chemical short-range order225
9Bonds, Rings and Chains227
9.1Outline227
9.2Elemental Molecular Liquids228
9.2.1Nitrogen228
9.2.2Phase diagram of carbon: Especially liquid-liquid transformation229
9.2.3Selenium and sulphur: Especially liquid-liquid transitions231
9.2.4Structure of liquid boron232
9.3Orientational Pair Correlation Function from Diffraction Experiments234
9.3.1Use of generalised rotation matrices235
9.3.2Example of orientational structure in water236
9.4Polymers238
9.4.1The isolated polymer molecule238
9.4.2Polymer solutions239
9.4.3Polymer blends242
9.4.4Polymeric materials243
9.5Liquid Crystal Phases244
9.5.1Smectic phase245
9.5.2Nematic phase245
9.5.3Cholesteric phase246
9.6Nematic Liquid Crystals and their Phase Transitions247
9.6.1Landau-de Gennes theory248
9.6.2Molecular mean-field theory of isotropic-nematic transition250
9.6.3The isotropic-nematic-smecticA transition251
9.6.4Model potentials for molecular liquid and liquid crystals252
Appendix 9.1Melting and Orientational Disorder253
Appendix 9.2Crystallisation from Solution254
10Supercooling and the Glassy State255
10.1Macroscopic Characteristics of a Glass255
10.2Kinetics of Nucleation and Phase Changes259
10.2.1Homogeneous nucleation and crystal growth259
10.2.2The critical cooling rate for glass formation261
10.2.3Superheating and vapour condensation261
10.3The Structure of Amorphous Solids262
10.3.1Network and modified-network glasses263
10.3.2Molten and amorphous semiconductors264
10.4Thermodynamic Aspects and Free Energy Landscape266
10.4.1A topographic view of supercooled liquids267
10.5Atomic Motions in the Glassy State269
10.5.1Relaxation processes269
10.5.2Strong and fragile liquids271
10.5.3Annealing and aging273
10.5.4Anharmonicity and boson peaks274
10.6Supercooled and Glassy Materials274
10.6.1Hard sphere statistics on th
From the B&N Reads Blog

Customer Reviews