Aberration-Free Refractive Surgery: New Frontiers in Vision

Aberration-Free Refractive Surgery: New Frontiers in Vision

Paperback(2nd ed. 2004. Softcover reprint of the original 2nd ed. 2004)

$219.99
View All Available Formats & Editions
Use Express Shipping for guaranteed delivery by December 24 
Qualifying orders placed by 11:59 a.m. ET on Dec. 21 can still be sent to Manhattan, NY addresses. Details

Product Details

ISBN-13: 9783642621116
Publisher: Springer Berlin Heidelberg
Publication date: 09/27/2012
Edition description: 2nd ed. 2004. Softcover reprint of the original 2nd ed. 2004
Pages: 297
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

1 The Development of Wavefront Technology and its Application to Ophthalmology.- 1.1 Abstract.- 1.2 Introduction.- 1.3 History.- 1.4 Principle of Aberration Measurement.- 1.5 Definitions of Optical Imaging Quality.- 1.5.1 Root Mean Square.- 1.5.2 Optical Aberration Index.- 1.5.3 Modulation Transfer function.- 1.5.4 Point Spread function.- 1.5.5 Application of the Performance Indices in a Normal Human Eye.- 1.6 Principle of Closed Loop Adaptive Optical Control.- 1.6.1 Adaptive Optics in Astronomy.- 1.6.2 History of Adaptive Optics at the University of Heidelberg.- 1.6.3 Performance of Foil Mirrors.- 1.6.4 Comparison of Foil Mirrors and Microchip Mirror.- 1.7 CLAO/Bille Aberrometer.- 1.8 Demonstration of CLAO/Bille Aberrometer.- 1.9 Conclusion.- References.- 2 Wavefront Technology for Vision and Ophthalmology.- 2.1 Introduction.- 2.2 Wavefront Optometers.- 2.3 Ray-Tracing Optometers.- 2.4 Wavefront-Sensing Optometer.- 2.5 Equivalency of Subjective Ray Tracing and Outgoing Wavefront Sensing.- 2.6 Vision Diagnosis Using Wavefront Optometers.- 2.7 Aberrations of the Human Eye.- 2.8 Determination of Best Sphero-Cylindrical Correction by Wavefront Optometers.- 2.9 Point-Spread Function (PSF) of the Eye.- 2.10 Modulation Transfer Function (MTF) of the Eye.- 2.11 Wavefront-Guided Vision Correction.- 2.12 Customized Vision Correction through Adaptive Optics.- 2.13 Wavefront Technology for Laser Vision Correction.- 2.14 Wavefront Technology for the Calibration of Excimer Refractive Lasers.- 2.15 High-Resolution Retinal Imaging with Adaptive Optics.- 2.16 Photoreceptor Images.- 2.17 Confocal Scanning Laser Ophthalmoscopes (cSLO).- 2.18 Conclusion.- References.- 3 An Aberration Generator for the Calibration of Wavefront-Sensing Optometers.- 3.1 Introduction.- 3.2 Dynamic Source of Seidel Aberrations.- 3.3 Phase Plates as Sources of Aberrations.- 3.4 Experimental Setup with the Wavefront Sensor.- 3.5 Experiment Results.- 3.6 Conclusions.- References.- Appendix: Wavefront Maps of 8 Phase Plates.- 4 Optical Quality of the Human Eye: The Quest for Perfect Vision.- 4.1 Introduction.- 4.2 The Quality of the Human Eye.- 4.3 Linear Systems.- 4.3.1 Optical Systems.- 4.4 Representation of Aberrations.- 4.5 Simulations.- References.- 5 First Clinical Results with WaveScan.- 5.1 First Clinical Results with WaveScan.- 5.2 The Performance of a Wavefront Measurement and the Understanding of the WavePrint Maps.- 5.3 Application of the WaveScan in Refractive Surgery.- 5.4 Results of this Study: The Reliability of the WaveScan Compared to Manifest Refraction.- 5.5 Final Review.- 6 Wavefront Analysis: Clinical Primer.- 6.1 Definition of Important Terms.- 6.2 Current Ocular Refraction Evaluation Systems.- 6.2.1 Phoroptor and Autorefractors.- 6.2.2 Corneal Topography.- 6.2.3 20/10 Perfect Vision Wavefront System.- 6.2.4 Other Wavefront Sensing Devices.- 6.3 How the VISX 20/10 Wavefront System Works.- 6.4 How to Read a Wavefront Map.- 6.5 What are the Shortcomings of Shack—Hartmann Wavefront Analysis?.- 6.6 Reproducibility and Effect of Pupil Size.- 6.7 Clinical Examples.- 6.7.1 Case 1. Keratoconus.- 6.7.2 Case 2. Status Post Radial Keratotomy.- 6.7.3 Case 3. Posterior Subcapsular Cataract and Anterior Cortical Cataract.- 6.7.4 Case 4. Status Post Penetrating Keratoplasty for Keratoconus.- 6.7.5 Case 5. Unoperated “Normal” Eyes.- 6.7.6 Case 6. Irregular LASIK Ablation.- 6.7.7 Case 7. Status Post Hyperopic LASIK.- 6.7.8 Case 8. Normal Examination / No Refractive Error.- 6.7.9 Case 9. Status Post Myopic LASIK.- 6.7.10 Case 10. Normal Examination / Minimal Refractive Error.- References.- 7 Active Eye Tracking for Excimer Laser Refractive Surgery.- 7.1 Introduction.- 7.2 Understanding the Nature of Eye Motions during LVC.- 7.3 Effects of Head Movements on Fixation.- 7.4 Quality of the Fixation Target.- 7.5 Fixation Target Recommendations.- 7.6 Tracker Speed Requirements.- 7.7 Eye Tracking Methods: Analog vs. Video.- 7.8 Video Techniques.- 7.9 Sampling Rate and Tracking Rate.- 7.10 VISX Eye Tracking System.- 7.11 Robustness and Safety Features.- 7.12 Ablation Accuracy of the VISX ActiveTrak System.- 7.13 Conclusion.- References.- 8 Cyclotorsional Eye Tracking.- 8.1 Introduction.- 8.2 Tracking Algorithm.- 8.3 Affine Parameter Estimation.- 8.4 Torsional Tracking Results.- 8.5 Combined Torsional Alignment and Tracking Results.- 8.6 Algorithm Verification.- 8.7 Clinical Results.- 8.8 Real-Time Implementation.- 8.9 Conclusions.- References.- 9 Full Registration of the Laser Ablation to the Wavefront Measurement.- 9.1 Introduction.- 9.1.1 System Design and Calibration.- 9.1.2 WaveScan Instrument.- 9.1.3 Laser System.- 9.2 Image Processing.- 9.3 Biological Changes Leading to Registration Errors.- 9.3.1 Changing Position of the Pupil Center.- 9.3.2 Cyclorotation.- 9.4 Conclusion.- References.- 10 Variable Spot Scanning and Wavefront-Guided Laser Vision Correction.- 10.1 The VSS Approach to Ablation.- 10.2 Advantages of VSS.- 10.3 Predictive Ablation Modeling.- 10.4 Ablation Geometry.- 10.5 How the VSS Algorithm Solves the Ablation Problem.- 10.6 Accuracy of VSS.- 10.7 Physical Validation of VSS.- 10.8 Conclusion.- References.- Appendix A: Theory and Practice of Variable Spot Scanning: An Alternative to the Zernike Method for Reconstructing Wavefronts S. Somani.- Appendix B. Theory and Practice of Variable Spot Scanning: Generation of Wavefront-Correcting PreVue Lenses Using Variable Spot Scanning E. Gross.- Appendix C: Theory and Practice of Variable Spot Scanning: Using a Variable Repetition Rate to Reduce VSS Treatment Time E. Gross.- 11 Wavefront Driven Custom Ablation: First Clinical Results.- 11.1 Introduction.- 11.2 History.- 11.3 Methods.- 11.3.1 Wavefronts.- 11.3.2 Single Pass Wavefront Measurement.- 11.3.3 Principle of the Shack—Hartmann Sensor.- 11.3.4 Techniques.- 11.3.5 Presentation of WaveScan Results.- 11.3.6 What a Wavefront Map Can Tell Us.- 11.3.7 What Is the RMS/OAI?.- 11.3.8 Treatment Tables.- 11.4 The Study.- 11.4.1 Scope of Study.- 11.4.2 Study Group.- 11.4.3 Subject Eligibility.- 11.5 Results.- 11.5.1 Uncorrected Visual Acuity.- 11.5.2 Best Corrected Visual Acuity.- 11.5.3 Refractive Error.- 11.5.4 Higher Order Aberrations.- 11.6 Conclusion.- References.- 12 Photorefractive Keratectomy: Indications, Surgical Techniques, Complications, and Results.- 12.1 Introduction.- 12.2 Indications for PRK.- 12.3 Preoperative Management.- 12.4 Surgical Technique.- 12.5 Preoperative Medications.- 12.6 Epithelial Removal.- 12.6.1 Mechanical.- 12.6.2 Chemical.- 12.6.3 LASEK.- 12.6.4 Laser.- 12.6.5 Transepithelial.- 12.6.6 Stromal Treatment.- 12.7 Nomogram and Laser Algorithm.- 12.7.1 Centration.- 12.7.2 Stromal Cooling.- 12.8 Postoperative Management.- 12.8.1 Medications.- 12.8.2 Epithelial Healing.- 12.9 Complications.- 12.9.1 Haloes and Glare.- 12.9.2 Loss of Visual Performance.- 12.10 Late Complications.- 12.10.1 Undercorrection.- 12.10.2 Overcorrection.- 12.10.3 Haze and Regression.- 12.10.4 Treatment of Haze and Regression.- 12.10.5 Decentration.- 12.10.6 Irrecular Astigmatism.- 12.11 Results.- 12.11.1 Myopic PRK.- 12.11.2 Hyperopic PRK.- 12.12 Summary.- 13 Reviewing the Wavefront Clinical Trials: Myopia, Hyperopia, and Eyes with Reduced Acuity.- 13.1 Wavefront-Guided Myopia Treatment Results.- 13.2 Study Description.- 13.3 Patient Satisfaction with Night Vision.- 13.4 Summary.- 13.5 Hyperopia Study.- 13.6 Study Description.- 13.7 Case Study.- 13.8 Reduced Acuity Patients.- 13.9 Case Study.- 13.10 Conclusion.- 14 Refractive Surgical Applications of Femtosecond Lasers.- 14.1 Introduction.- 14.2 Laser-Tissue Interaction.- 14.3 All-Solid-State Femtosecond Laser Technology.- 14.4 Instrumentation.- 14.4.1 Femtosecond Laser Application System for Clinical Use.- 14.4.2 Ophthalmic Femtosecond Laser Procedures.- 14.5 Experimental Results.- 14.6 First Clinical Experience with the FEMTEC Laser.- 14.7 Conclusion and Outlook.- References.- 15 Femtosecond Laser Technology in Keratoplasty.- 15.1 The Cornea — Architecture of an Electromagnetic Interface.- 15.2 Curative Corneal Surgery—Keratoplasty.- 15.3 A Vision for Vision: Fully Integrated Curative Corneal Procedures.- 15.4 Why Quest for Novel Techniques?.- 15.5 Challenges—A Virtual Blade as an Ideal Tool?.- References.- Excursus: A Nomenclature Framework for Quantitative Evaluation of Corneal Femtosecond Laser Procedures.- Case Report.- Comment.- References for Excursus.- Appendices.- A Refractive Society Symposium.- A.1 Comparing WaveScan and Manifest Refractions D.D. Koch.- A.2 Patient Selection for LVC Using Wavefront Technology J.F. Doane.- A.3 Multi-center Wavefront Ablations T.P. O’Brien.- A.4 Six-month U.S. Refractive Wavefront Ablation Results C. Kraff.- A.5 Preliminary Therapeutic Wavefront Ablation Results R.K. Maloney.- A.6 Presbyobic LASIK Techniques G.E. Tamayo.- A.7 Diagnostic Wavefront Compensation with Adaptive Optics F.H. Loesel.- B Refractive Outcomes with “One-Step” Wavefront Guided LASIK D.D. Koch, L. Wang.- B.1 Introduction.- B.2 Patients and Methods.- B.2.1 Patient Selection.- B.2.2 WaveScan Treatment Design.- B.2.3 WavePrint Treatment Methods.- B.2.4 Main Outcome Measures.- B.3 Results.- B.3.1 Cohort Description.- B.3.2 UCVA.- B.3.3 Change in BSCVA.- B.3.4 Predictability.- B.3.5 Stability.- B.3.6 Higher Order Aberration Changes.- B.3.7 Complications and Adverse Events.- B.4 Conclusion.- About the Editors.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews