Academic Press Library in Signal Processing: Array and Statistical Signal Processing

Academic Press Library in Signal Processing: Array and Statistical Signal Processing

by Elsevier Science

NOOK Book(eBook)

$191.49 $225.00 Save 15% Current price is $191.49, Original price is $225. You Save 15%.
View All Available Formats & Editions
Available on Compatible NOOK Devices and the free NOOK Apps.
Want a NOOK ? Explore Now

Overview

Academic Press Library in Signal Processing: Array and Statistical Signal Processing by Elsevier Science

This third volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in array and statistical signal processing.

With this reference source you will:

  • Quickly grasp a new area of research 
  • Understand the underlying principles of a topic and its application
  • Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved
  • Quick tutorial reviews of important and emerging topics of research in array and statistical signal processing
  • Presents core principles and shows their application
  • Reference content on core principles, technologies, algorithms and applications
  • Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge
  • Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic

Product Details

ISBN-13: 9780124116214
Publisher: Elsevier Science
Publication date: 08/31/2013
Series: Academic Press Library in Signal Processing , #3
Sold by: Barnes & Noble
Format: NOOK Book
Pages: 1012
File size: 32 MB
Note: This product may take a few minutes to download.

About the Author

Sergios Theodoridis is Professor of Signal Processing and Machine Learning in the Department of Informatics and Telecommunications of the University of Athens.

He is the co-author of the bestselling book, Pattern Recognition, and the co-author of Introduction to Pattern Recognition: A MATLAB Approach.

He serves as Editor-in-Chief for the IEEE Transactions on Signal Processing, and he is the co-Editor in Chief with Rama Chellapa for the Academic

Press Library in Signal Processing.

He has received a number of awards including the 2014 IEEE Signal Processing Magazine Best Paper Award, the 2009 IEEE Computational Intelligence Society Transactions on Neural Networks Outstanding Paper Award, the 2014 IEEE Signal Processing Society Education Award, the EURASIP 2014 Meritorious Service Award, and he has served as a Distinguished Lecturer for the IEEE Signal Processing Society and the IEEE Circuits and Systems Society. He is a Fellow of EURASIP and a Fellow of IEEE.
Prof. Rama Chellappa received the B.E. (Hons.) degree from the University of Madras, India, in 1975 and the M.E. (Distinction) degree from Indian Institute of Science, Bangalore, in 1977. He received M.S.E.E. and Ph.D. Degrees in Electrical Engineering from Purdue University, West Lafayette, IN, in 1978 and 1981 respectively. Since 1991, he has been a Professor of Electrical Engineering and an affiliate Professor of Computer Science at University of Maryland, College Park. He is also affiliated with the Center for Automation Research (Director) and the Institute for Advanced Computer Studies (Permanent Member). In 2005, he was named a Minta Martin Professor of Engineering. Prior to joining the University of Maryland, he was an Assistant (1981-1986) and Associate Professor (1986-1991) and Director of the Signal and Image Processing Institute (1988-1990) at University of Southern California, Los Angeles.
Over the last 29 years, he has published numerous book chapters, peer-reviewed journal and conference papers. He has co-authored and edited books on MRFs, face and gait recognition and collected works on image processing and analysis. His current research interests are face and gait analysis, markerless motion capture, 3D modeling from video, image and video-based recognition and exploitation and hyper spectral processing.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews