Algebraic Curves over Finite Fields
In this tract, Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the theory of algebraic geometric Goppa codes on algebraic curves. Among the applications considered are: the problem of counting the number of solutions of equations over finite fields; Bombieri's proof of the Reimann hypothesis for function fields, with consequences for the estimation of exponential sums in one variable; Goppa's theory of error-correcting codes constructed from linear systems on algebraic curves; there is also a new proof of the TsfasmanSHVladutSHZink theorem. The prerequisites needed to follow this book are few, and it can be used for graduate courses for mathematics students. Electrical engineers who need to understand the modern developments in the theory of error-correcting codes will also benefit from studying this work.
1100950464
Algebraic Curves over Finite Fields
In this tract, Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the theory of algebraic geometric Goppa codes on algebraic curves. Among the applications considered are: the problem of counting the number of solutions of equations over finite fields; Bombieri's proof of the Reimann hypothesis for function fields, with consequences for the estimation of exponential sums in one variable; Goppa's theory of error-correcting codes constructed from linear systems on algebraic curves; there is also a new proof of the TsfasmanSHVladutSHZink theorem. The prerequisites needed to follow this book are few, and it can be used for graduate courses for mathematics students. Electrical engineers who need to understand the modern developments in the theory of error-correcting codes will also benefit from studying this work.
84.0 In Stock
Algebraic Curves over Finite Fields

Algebraic Curves over Finite Fields

by Carlos Moreno
Algebraic Curves over Finite Fields

Algebraic Curves over Finite Fields

by Carlos Moreno

Paperback(New Edition)

$84.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

In this tract, Professor Moreno develops the theory of algebraic curves over finite fields, their zeta and L-functions, and, for the first time, the theory of algebraic geometric Goppa codes on algebraic curves. Among the applications considered are: the problem of counting the number of solutions of equations over finite fields; Bombieri's proof of the Reimann hypothesis for function fields, with consequences for the estimation of exponential sums in one variable; Goppa's theory of error-correcting codes constructed from linear systems on algebraic curves; there is also a new proof of the TsfasmanSHVladutSHZink theorem. The prerequisites needed to follow this book are few, and it can be used for graduate courses for mathematics students. Electrical engineers who need to understand the modern developments in the theory of error-correcting codes will also benefit from studying this work.

Product Details

ISBN-13: 9780521459013
Publisher: Cambridge University Press
Publication date: 10/14/1993
Series: Cambridge Tracts in Mathematics , #97
Edition description: New Edition
Pages: 260
Product dimensions: 5.98(w) x 9.02(h) x 0.59(d)

Table of Contents

1. Algebraic curves and function fields; 2. The Riemann–Roch theorem; 3. Zeta functions; 4. Applications to exponential sums and zeta functions; 5. Applications to coding theory; Bibliography.
From the B&N Reads Blog

Customer Reviews