ISBN-10:
0470058870
ISBN-13:
9780470058879
Pub. Date:
06/15/2009
Publisher:
Wiley
Applied Data Mining for Business and Industry / Edition 2

Applied Data Mining for Business and Industry / Edition 2

by Paolo Giudici, Silvia Figini
Current price is , Original price is $81.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Product Details

ISBN-13: 9780470058879
Publisher: Wiley
Publication date: 06/15/2009
Series: Statistics in Practice
Edition description: 2nd ed.
Pages: 258
Product dimensions: 5.90(w) x 8.90(h) x 0.70(d)

About the Author

Paolo Giudici – Department of Economics and Quantitative Methods, University of Pavia, A lecturer in data mining, business statistics, data analysis and risk management, Professor Giudici is also the director of the data mining laboratory. He is the author of around 80 publications, and the coordinator of 2 national research grants on data mining, and local coordinator of a European integrated project on the topic. He was the sole author of the first edition of this book, which has been translated into both Italian and Chinese. He is also one of the Editors of Wiley's Series in Computational Statistics.

Silvia Figini, Ms Figini has worked for 2 years for the Competence centre for data mining analysis and business intelligence at SAS Milan. She is currently completing a PhD in statistics, and already has a collection of publications to her name

Table of Contents

1 Introduction.

Part I Methodology.

2 Organisation of the data.

2.1 Statistical units and statistical variables.

2.2 Data matrices and their transformations.

2.3 Complex data structures.

2.4 Summary.

3 Summary statistics.

3.1 Univariate exploratory analysis.

3.1.1 Measures of location.

3.1.2 Measures of variability.

3.1.3 Measures of heterogeneity.

3.1.4 Measures of concentration.

3.1.5 Measures of asymmetry.

3.1.6 Measures of kurtosis.

3.2 Bivariate exploratory analysis of quantitative data.

3.3 Multivariate exploratory analysis of quantitative data.

3.4 Multivariate exploratory analysis of qualitative data.

3.4.1 Independence and association.

3.4.2 Distance measures.

3.4.3 Dependency measures.

3.4.4 Model-based measures.

3.5 Reduction of dimensionality.

3.5.1 Interpretation of the principal components.

3.6 Further reading.

4 Model specification.

4.1 Measures of distance.

4.1.1 Euclidean distance.

4.1.2 Similarity measures.

4.1.3 Multidimensional scaling.

4.2 Cluster analysis.

4.2.1 Hierarchical methods.

4.2.2 Evaluation of hierarchical methods.

4.2.3 Non-hierarchical methods.

4.3 Linear regression.

4.3.1 Bivariate linear regression.

4.3.2 Properties of the residuals.

4.3.3 Goodness of fit.

4.3.4 Multiple linear regression.

4.4 Logistic regression.

4.4.1 Interpretation of logistic regression.

4.4.2 Discriminant analysis.

4.5 Tree models.

4.5.1 Division criteria.

4.5.2 Pruning.

4.6 Neural networks.

4.6.1 Architecture of a neural network.

4.6.2 The multilayer perceptron.

4.6.3 Kohonen networks.

4.7 Nearest-neighbour models.

4.8 Local models.

4.8.1 Association rules.

4.8.2 Retrieval by content.

4.9 Uncertainty measures and inference.

4.9.1 Probability.

4.9.2 Statistical models.

4.9.3 Statistical inference.

4.10 Non-parametric modelling.

4.11 The normal linear model.

4.11.1 Main inferential results.

4.12 Generalised linear models.

4.12.1 The exponential family.

4.12.2 Definition of generalised linear models.

4.12.3 The logistic regression model.

4.13 Log-linear models.

4.13.1 Construction of a log-linear model.

4.13.2 Interpretation of a log-linear model.

4.13.3 Graphical log-linear models.

4.13.4 Log-linear model comparison.

4.14 Graphical models.

4.14.1 Symmetric graphical models.

4.14.2 Recursive graphical models.

4.14.3 Graphical models and neural networks.

4.15 Survival analysis models.

4.16 Further reading.

5 Model evaluation.

5.1 Criteria based on statistical tests.

5.1.1 Distance between statistical models.

5.1.2 Discrepancy of a statistical model.

5.1.3 Kullback–Leibler discrepancy.

5.2 Criteria based on scoring functions.

5.3 Bayesian criteria.

5.4 Computational criteria.

5.5 Criteria based on loss functions.

5.6 Further reading.

Part II Business case studies.

6 Describing website visitors.

6.1 Objectives of the analysis.

6.2 Description of the data.

6.3 Exploratory analysis.

6.4 Model building.

6.4.1 Cluster analysis.

6.4.2 Kohonen networks.

6.5 Model comparison.

6.6 Summary report.

7 Market basket analysis.

7.1 Objectives of the analysis.

7.2 Description of the data.

7.3 Exploratory data analysis.

7.4 Model building.

7.4.1 Log-linear models.

7.4.2 Association rules.

7.5 Model comparison.

7.6 Summary report.

8 Describing customer satisfaction.

8.1 Objectives of the analysis.

8.2 Description of the data.

8.3 Exploratory data analysis.

8.4 Model building.

8.5 Summary.

9 Predicting credit risk of small businesses.

9.1 Objectives of the analysis.

9.2 Description of the data.

9.3 Exploratory data analysis.

9.4 Model building.

9.5 Model comparison.

9.6 Summary report.

10 Predicting e-learning student performance.

10.1 Objectives of the analysis.

10.2 Description of the data.

10.3 Exploratory data analysis.

10.4 Model specification.

10.5 Model comparison.

10.6 Summary report.

11 Predicting customer lifetime value.

11.1 Objectives of the analysis.

11.2 Description of the data.

11.3 Exploratory data analysis.

11.4 Model specification.

11.5 Model comparison.

11.6 Summary report.

12 Operational risk management.

12.1 Context and objectives of the analysis.

12.2 Exploratory data analysis.

12.3 Model building.

12.4 Model comparison.

12.5 Summary conclusions.

References.

Index.

What People are Saying About This

From the Publisher

“If I had to recommend a good introduction to data mining, I would choose this one.” (Stat Papers, 2011)

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews