ISBN-10:
1848214049
ISBN-13:
9781848214040
Pub. Date:
01/29/2013
Publisher:
Wiley
Bio-aggregate-based Building Materials: Applications to Hemp Concretes / Edition 1

Bio-aggregate-based Building Materials: Applications to Hemp Concretes / Edition 1

by Sofiane Amziane, Laurent Arnaud
Current price is , Original price is $176.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Product Details

ISBN-13: 9781848214040
Publisher: Wiley
Publication date: 01/29/2013
Series: ISTE Series , #710
Pages: 336
Sales rank: 946,595
Product dimensions: 6.30(w) x 9.30(h) x 0.90(d)

About the Author

Professor Sofiane AMZIANE is in charge of the research program dealing with bio-based building materials at Université Blaise Pascal (Institut Pascal, Clermont Ferrand, France).

Laurent Arnaud is is Professor at the "Ecole Nationale des TPE" ENTPE in University Lyon 1, in the Department of Civil Engineering and Buildings (DGCB), Lyon, France.

Read an Excerpt

Click to read or download

Table of Contents

Foreword xi

Chapter 1. Environmental, Economic and Social Context ofAgro-Concretes 1
Vincent NOZAHIC and Sofiane AMZIANE

1.1. Sustainable development, construction and materials 1

1.1.1. Environmental impacts of the construction sector 2

1.2. Standardization and regulation: toward a global approach3

1.2.1. Standardization and regulation in force 3

1.2.2. Limitations of the normative and regulatory framework5

1.3. The materials: an increasingly crucial element 7

1.3.1. Role of the materials in energy consumption 7

1.3.2. What is a low-environmental-impact material? 7

1.3.3. Constantly-changing regulations 8

1.4. The specific case of concretes made from lignocellularparticles 9

1.4.1. Development of agro-concretes in the context of France10

1.5. What does the term “Agro-concrete” mean? 13

1.5.1. General definition 13

1.5.2. Lignocellular resources 13

1.5.3. General characteristics of lignocellular agro-resources15

1.6. Conclusions 19

1.7. Bibliography 19

Chapter 2. Characterization of Plant-Based Aggregates27
Vincent PICANDET

2.1. Microstructure of the shiv particles 28

2.1.1. Structure of the stem of fibrous plants 28

2.1.2. SEM observation of hemp shiv particles 30

2.1.3. Chemistry of the cell walls 31

2.1.4. Density and porosity, in the case of hemp shiv 35

2.2. Particle Size Distribution (PSD) 36

2.2.1. General characteristics of aggregates made from fibrousplants 36

2.2.2. Fiber content 37

2.2.3. Methods for characterizing the PSD 38

2.2.4. PSD analyses 48

2.2.5. Comparison of the results obtained by image analysis52

2.2.6. Characterization of the geometry of the particles 57

2.2.7. Characterization of the PSD 58

2.2.8. Conclusions 65

2.3. Compactness and compressibility 66

2.4. Water absorption capacity 68

2.5. Bibliography 69

Chapter 3. Binders 75
Gilles ESCADEILLAS, Camille MAGNIONT, Sofiane AMZIANE andVincent NOZAHIC

3.1. Portland cements 75

3.1.1. General 75

3.1.2. Production 76

3.1.3. Chemical and mineral composition 77

3.1.4. Properties 77

3.1.5. Environmental impacts 84

3.2. Lime 84

3.2.1. General 84

3.2.2. Aerial lime 86

3.2.3. Natural hydraulic limes 89

3.3. Lime-pozzolan mixtures 92

3.3.1. Natural pozzolans 93

3.3.2. Calcined natural pozzolans: metakaolin 96

3.3.3. Fly ash 101

3.3.4. Blast furnace slag 103

3.4. Plaster 106

3.4.1. General 106

3.4.2. Production 106

3.4.3. Chemical and mineralogical composition 108

3.4.4. Properties 108

3.4.5. Environmental impacts 110

3.5. Summary 110

3.6. Bibliography 111

Chapter 4. Formulation and Implementation 117
Christophe LANOS, Florence COLLET, Gérard LENAIN and YvesHUSTACHE

4.1. Objectives 117

4.1.1. Preamble 117

4.1.2. Traditional applications 119

4.1.3. Constituents and mixture 120

4.1.4. Methods of implementation 121

4.2. Rules of formulation 122

4.2.1. Basis of usual formulations 122

4.2.2. Influence of the proportion of paste in the mixture124

4.2.3. Quality of the paste and water content 128

4.2.4. Homogeneity of the paste 135

4.2.5. The relationship between formulation and strength 137

4.2.6. The relationship between formulation and thermo-hydricproperties 141

4.3. Examples of formulations 141

4.3.1. Origin of the data 141

4.3.2. Walling application 141

4.3.3. Flooring application 142

4.3.4. Roofing application 142

4.3.5. Other applications 142

4.4. Installation techniques 143

4.4.1. Building a wall using formwork 143

4.4.2. Application by spraying 143

4.4.3. Laying of a floor 144

4.4.4. Creating a roof 144

4.4.5. Other uses 145

4.5. Professional rules for buildings using hempcrete and hempmortars 145

4.5.1. History 145

4.5.2. Principles and content of the professional regulations146

4.6. Bibliography 152

Chapter 5. Mechanical Behavior 153
Laurent ARNAUD, Sofiane AMZIANE, Vincent NOZAHIC and EtienneGOURLAY

5.1. Composite material 153

5.1.1. Making of the test tubes 154

5.1.2. Mechanical behavior 154

5.1.3. Effect of initial compression 157

5.1.4. Effect of the nature of the binder 159

5.1.5. Influence of the binder content 162

5.1.6. Influence of the particle size 164

5.1.7. Influence of the curing conditions 165

5.1.8. Evolution over time 166

5.1.9. Interaction between particles and binder 167

5.1.10. Anisotropic behavior 170

5.2. Modeling of the mechanical behavior 171

5.2.1. Empirical approach 171

5.2.2. Self-consistent homogenization approach 173

5.3. Toward the study of a stratified composite 174

5.4. Conclusion 175

5.5. Bibliography 176

Chapter 6. Hygrothermal Behavior of Hempcrete 179
Laurent ARNAUD, Driss SAMRI and Étienne GOURLAY

6.1. Introduction 179

6.2. Heat conductivity 180

6.2.1. Measurement of the conductivity 181

6.2.2. Modeling of the heat conductivity in dry and humidconditions 182

6.2.3. Heat transfers 185

6.3. Hygrothermal transfers 186

6.3.1. Experimental device 186

6.3.2. Stresses 189

6.3.3. Phase changes 191

6.3.4. Hygrothermal transfers 194

6.3.5. Role of coating products applied to hempcrete 196

6.3.6. Conclusions 200

6.4. Thermal characterization of various construction materials201

6.4.1. Autoclaved aerated concrete 202

6.4.2. Vertically perforated brick 204

6.4.3. Hempcrete 205

6.4.4. Conclusions 210

6.5. Modeling of coupled heat- and mass transfers 211

6.5.1. Introduction 211

6.5.2. Transfer laws 212

6.5.3. Transfer model: the Künzel model 216

6.5.4. Determination of the transfer coefficients 217

6.5.5. Numerical modeling 222

6.6. Conclusions 235

6.7. Bibliography 238

Chapter 7. Acoustical Properties of Hemp Concretes243
Philippe GLÉ, Emmanuel GOURDON and Laurent ARNAUD

7.1. Introduction 243

7.2. Acoustical properties of the material on the basis of themain mechanisms 244

7.2.1. Influence of the components 244

7.2.2. Influence of the casting method 249

7.3. Modeling the acoustical properties 252

7.3.1. Physical analysis of the acoustical properties beingmeasured 253

7.3.2. The adapted double porosity model and its parameters255

7.3.3. Experimental validation of the model 257

7.4. Application of the model to the acoustical characterizationof shiv 258

7.4.1. Porosity of shiv 258

7.4.2. Resistivity 262

7.5. Conclusion 264

7.6. Bibliography 264

Chapter 8. Plant-Based Concretes in Structures: StructuralAspect – Addition of a Wooden Support to Absorb the Strain267
Philippe MUNOZ and Didier PIPET

8.1. Introduction 267

8.2. Preliminary test 269

8.2.1. Description of the panel 269

8.2.2. Putting the panel in place on the bracing bank 270

8.2.3. Longitudinal loading and measurement of the movements271

8.2.4. Behavior of the test bank 273

8.2.5. Behavior of the wooden panel 274

8.3. Test on a composite panel of a wooden skeleton andhempcrete 276

8.3.1. Description of the panel 276

8.3.2. Emplacement of the panel on the bracing bank 276

8.3.3. Vertical loading 279

8.3.4. Longitudinal loading and measurement of the movements280

8.3.5. Running of the test 281

8.3.6. Feature of the ruin of the panel 283

8.4. Results and comparative analysis 285

8.5. Conclusions and reflections 287

8.6. Acknowledgements 288

8.7. Bibliography 288

Chapter 9. Examination of the Environmental Characteristicsof a Banked Hempcrete Wall on a Wooden Skeleton, by LifecycleAnalysis: Feedback on the LCA Experiment from 2005 289
Marie-Pierre BOUTIN and Cyril FLAMIN

9.1. Introduction 289

9.2. Description of the products studied 291

9.3. Method for environmental evaluation of bio-sourcedmaterials 292

9.4. Lifecycle Analysis on hempcrete – methodology,working hypotheses and results 294

9.4.1. Delimitation of the system under study 294

9.4.2. Inventory analysis 298

9.4.3. Impact evaluation 303

9.4.4. Results and interpretation of the lifecycle 305

9.5. Interpretations of the lifecycle, conclusions andreflections 306

9.6. Bibliography 310

List of Authors 313

Index 315

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews