Bioinspired Devices: Emulating Nature's Assembly and Repair Process

Bioinspired Devices: Emulating Nature's Assembly and Repair Process

by Eugene C. Goldfield


View All Available Formats & Editions
Members save with free shipping everyday! 
See details


Robotic exoskeletons that allow stroke survivors to regain use of their limbs, 3D-printed replacement body parts, and dozens of other innovations still in schematic design are revolutionizing the treatment of debilitating injuries and nervous system disorders. What all these technologies have in common is that they are modeled after engineering strategies found in nature—strategies developed by a vast array of organisms over eons of evolutionary trial and error.

Eugene Goldfield lays out many principles of engineering found in the natural world, with a focus on how evolutionary and developmental adaptations, such as sensory organs and spinal cords, function within complex organisms. He shows how the component parts of highly coordinated structures organize themselves into autonomous functional systems. For example, when people walk, spinal cord neurons generate coordinated signals that continuously reorganize patterns of muscle activations during the gait cycle. This self-organizing capacity is just one of many qualities that allow biological systems to be robust, adaptive, anticipatory, and self-repairing. To exploit the full potential of technologies designed to interact seamlessly with human bodies, properties like these must be better understood and harnessed at every level, from molecules to cells to organ systems.

Bioinspired Devices brings together insights from a wide range of fields. A member of the Wyss Institute for Biologically Inspired Engineering, Goldfield offers an insider’s view of cutting-edge research, and envisions a future in which synthetic and biological devices share energy sources and control, blurring the boundary between nature and medicine.

Product Details

ISBN-13: 9780674967946
Publisher: Harvard
Publication date: 01/08/2018
Pages: 480
Product dimensions: 6.12(w) x 9.25(h) x (d)

About the Author

Eugene C. Goldfield is Associate Professor of Psychology in Psychiatry at Boston Children’s Hospital, Harvard Medical School, and Associate Faculty at the Wyss Institute for Biologically Inspired Engineering at Harvard University.

Table of Contents

Preface ix

Part I Biological Inspiration for Nature's Building and Repair Process

1 Bioinspired Devices as Parts of Complex Systems 3

2 How Nature Builds: Physical Law, Morphogenesis, and Dynamical Systems 34

3 What Nature Builds: Materials and Devices 70

4 Building Devices the Way That Nature Does 111

Part II Structure-Function, Development, and Vulnerabilities of Nervous Systems

5 Nature's Nervous System Networks 149

6 Human Nervous System: Development and Vulnerability 197

7 How Nature Remodels and Repairs Neural Circuits 234

Part III Understanding and Emulating Nature's Responses to Injury or Damage

8 Neuroprosthetics: The Embodiment of Devices 269

9 Neurorehabilitation for Remodeling and Repairing Injured Nervous Systems 302

10 Toward Devices That Are Seamless Parts of Collective, Adaptive, and Emergent Systems 338

References 377

Index 445

Customer Reviews