Biologically Inspired Algorithms for Financial Modelling / Edition 1

Biologically Inspired Algorithms for Financial Modelling / Edition 1

ISBN-10:
3540262520
ISBN-13:
9783540262527
Pub. Date:
02/10/2006
Publisher:
Springer Berlin Heidelberg
Select a Purchase Option (2006)
  • purchase options
    $125.81 $179.00 Save 30% Current price is $125.81, Original price is $179. You Save 30%.
  • purchase options

Overview

Biologically Inspired Algorithms for Financial Modelling / Edition 1

Predicting the future for financial gain is a difficult, sometimes profitable activity. The focus of this book is the application of biologically inspired algorithms (BIAs) to financial modelling. In a detailed introduction, the authors explain computer trading on financial markets and the difficulties faced in financial market modelling. Then Part I provides a thorough guide to the various bioinspired methodologies neural networks, evolutionary computing (particularly genetic algorithms and grammatical evolution), particle swarm and ant colony optimization, and immune systems. Part II brings the reader through the development of market trading systems. Finally, Part III examines real-world case studies where BIA methodologies are employed to construct trading systems in equity and foreign exchange markets, and for the prediction of corporate bond ratings and corporate failures. The book was written for those in the finance community who want to apply BIAs in financial modelling, and for computer scientists who want an introduction to this growing application domain.

Product Details

ISBN-13: 9783540262527
Publisher: Springer Berlin Heidelberg
Publication date: 02/10/2006
Series: Natural Computing Series
Edition description: 2006
Pages: 277
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

Methodologies.- Neural Network Methodologies.- Evolutionary Methodologies.- Grammatical Evolution.- The Particle Swarm Model.- Ant Colony Models.- Artificial Immune Systems.- Model Development.- Model Development Process.- Technical Analysis.- Case Studies.- Overview of Case Studies.- Index Prediction Using MLPs.- Index Prediction Using a MLP-GA Hybrid.- Index Trading Using Grammatical Evolution.- Adaptive Trading Using Grammatical Evolution.- Intra-day Trading Using Grammatical Evolution.- Automatic Generation of Foreign Exchange Trading Rules.- Corporate Failure Prediction Using Grammatical Evolution.- Corporate Failure Prediction Using an Ant Model.- Bond Rating Using Grammatical Evolution.- Bond Rating Using AIS.- Wrap-up.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews