×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Introduction to Digital Communication / Edition 2
     

Introduction to Digital Communication / Edition 2

by Rodger E. Ziemer, Roger W. Peterson
 

See All Formats & Editions

ISBN-10: 0138964815

ISBN-13: 9780138964818

Pub. Date: 08/09/2000

Publisher: Pearson

This book provides a comprehensive and in-depth practical introduction to digital communications, from fundamental theory to state-of the-art material. It incorporates many practical examples of design issues. The book offers a broad perspective through a wide range of discussion topics, as well as basic background material. It covers a wide

Overview

This book provides a comprehensive and in-depth practical introduction to digital communications, from fundamental theory to state-of the-art material. It incorporates many practical examples of design issues. The book offers a broad perspective through a wide range of discussion topics, as well as basic background material. It covers a wide range of topics, including digital modulation; signal-space methods; coding; spread spectrum communications; digital cellular communications; and satellite communication link analysis. The book includes derivations as well as tables of special functions. It also provides applications of MATLAB programs useful in communication system design. A valuable reference book for professional communications engineers.ÿ

Product Details

ISBN-13:
9780138964818
Publisher:
Pearson
Publication date:
08/09/2000
Edition description:
2ND
Pages:
905
Product dimensions:
7.00(w) x 9.00(h) x 1.70(d)

Table of Contents

(NOTE: Most chapters begin with an Introduction and conclude with Summary, References, and Problems.)

1. Introduction to Digital Data Transmission.

Components of a Digital Communication System. Communications Channel Modeling. Communication Link Power Calculations. Driving Forces in Communications. Computer Use in Communication System Analysis and Design. Preview of the Book.

2. Signals, Systems, Modulation, and Noise: Overview.

Review of Signal and Linear System Theory. Basic Analog Modulation Techniques. Complex Envelope Representation of Bandpass Signals and Systems. Signal Distortion and Filtering. Practical Filter Types and Characteristics. Sampling Theory. Random Processes. Computer Generation of Random Variables.

3. Basic Digital Communication Systems.

The Binary Digital Communications Problem. Signaling through Bandlimited Channels. Equalization in Digital Data Transmission. A Digital Communication System Simulation Example. Noise Effects in Pulse Code Modulation.

4. Signal-Space Methods in Digital Data Transmission.

Optimum Receiver Principals in Terms of Vector Spaces. Performance Analysis of Coherent Digital Signaling Schemes. Signaling Schemes Not Requiring Coherent References at the Receiver. Comparison of Digital Modulation Systems. Comparison of M-ary Digital Modulation Schemes on Power and Bandwidth-Equivalent Bases. Some Commonly Used Modulation Schemes. Design Examples and System Tradeoffs. Multi-h Continuous Phase Modulation. Orthogonal Frequency Division Multiplexing.

5. Channel Degradations in Digital Communications.

Synchronization in Communication Systems. The Effects of Slow Signal Fading in Communicative Systems. Diagnostic Tools for Communication System Design.

6. Fundamentals of Information Theory and Block Coding.

Basic Concepts of Information Theory. Fundamentals of Block Coding. Coding Performance in Slow Fading Channels.

7. Fundamentals of Convolutional Coding.

Basic Concepts. The Viterbi Algorithm. Good Convolutional Codes and Their Performance. Other Topics.

8. Fundamentals of Repeat Request Systems.

General Considerations. Three ARQ Strategies. Codes for Error Detection.

9. Spread-Spectrum Systems.

Two Communication Problems. Types of Spread-Spectrum Systems. Complex-Envelope Representation of Spread Spectrum. Generation and Properties of Pseudorandom Sequences. Synchronization of Spread-Spectrum Systems. Performance of Spread-Spectrum Systems in Jamming Environments. Performance in Multiple User Environments. Multiuser Detection. Examples of Spread-Spectrum Systems.

10. Introduction to Cellular Radio Communications.

Frequency Reuse. Channel Models. Mitigation Techniques for the Multipath Fading Channel. System Design and Performance Prediction. Advanced Mobile Phone Service. Global System for Mobile Communications. Code Division Multiple Access. Recommended Further Reading.

11. Satellite Communications.

Allocation of a Satellite Transmission Resource. Link Power Budget Analysis. Examples of Link Power Budget Calculations. Low- and Medium-Earth Orbit Voice Messaging Satellite Systems.

Appendix A. Probability and Random Variables,

Probability Theory. Random Variables, Probability Density Functions, and Averages. Characteristic Function and Probability Generating Function. Transformations of Random Variables. Central Limit Theorem.

Appendix B. Characterization of Internally Generated Noise.

Appendix C. Attenuation of Radio-Wave Propagation by Atmospheric Gases and Rain.

Appendix D. Generation of Coherent References.

Description of Phase Noise and Its Properties. Phase-Lock Loop Models and Characteristics of Operation. Frequency Synthesis.

Appendix E. Gaussian Probability Function.

Appendix F. Mathematical Tables.

The Sinc Function. Trigonometric Identities. Indefinite Integrals. Definite Integrals. Series Expansions. Fourier Transform Theorems. Fourier Transform Pairs.

Index.

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews