Chemical Physics of Redox Metalloenzyme Catalysis

Chemical Physics of Redox Metalloenzyme Catalysis

Paperback(Softcover reprint of the original 1st ed. 1988)

View All Available Formats & Editions
Choose Expedited Shipping at checkout for guaranteed delivery by Monday, January 28

Product Details

ISBN-13: 9783642731020
Publisher: Springer Berlin Heidelberg
Publication date: 12/16/2011
Edition description: Softcover reprint of the original 1st ed. 1988
Pages: 331
Product dimensions: 6.69(w) x 9.61(h) x 0.03(d)

Table of Contents

1 General Information on Metalloenzymes and Metal Carriers.- 1.1 The Discovery of Metalloenzymes.- 1.2 The Main Biological Role of Metalloenzymes.- 1.3 Classification and Nomenclature of Metalloenzymes and Metal Carriers. Mechanisms of Enzyme Action.- 2 Physical Methods of Investigation of Metalloenzymes.- 2.1 Physical Methods. General Principles.- 2.2 Mössbauer Spectroscopy.- 2.3 X-Ray Absorption. X-Ray Photoelectron and Photoelectron Spectroscopy.- 2.4 Extended X-Ray Absorption Fine Structure (EXAFS).- 2.5 Ultraviolet and Visible Spectroscopy.- 2.5.1 Absorption Spectra.- 2.5.2 Optical Rotation and Circular Dichroism. Magnetic Optical Rotation and Magnetic Circular Dichroism.- 2.6 Infrared and Raman Spectroscopy. Resonance Raman Scattering.- 2.7 Electron Paramagnetic Resonance.- 2.7.1 General.- 2.7.2 Specificity of EPR Spectroscopy of Transition-Metal Complexes.- 2.7.3 Effect of Spin-Spin Interactions of the Parameters of EPR Spectra.- 2.8 Electron-Nuclear and Electron-Electron Double Resonance. Magnetic Nuclear Modulation.- 2.9 Nuclear Magnetic Resonance.- 3 Physical Label Techniques.- 3.1 The Spin-Labelling Technique.- 3.1.1 General.- 3.1.2 Effect of Rotational Diffusion on the EPR Spectra of Nitroxide Radicals.- 3.1.3 The Double-Label Technique.- 3.1.4 The Spin Label-Spin Probe Method.- 3.2 Luminescent Labels.- 3.2.1 Physical Principles.- 3.2.2 Inductive-Resonance Energy Transfer.- 3.2.3 Triplet-Triplet Energy Transfer. Triplet Labels.- 3.3 Electron-Scattering Labels.- 3.3.1 General.- 3.3.2 Electron Microscopy.- 3.3.3 Small-Angle X-Ray Scattering.- 3.4 Mössbauer Labels.- 4 Kinetic Methods in Enzyme Catalysis.- 4.1 Kinetics of Cooperative Processes.- 4.2 Experimental Methods of Studying the Kinetics of Enzymatic Reactions.- 4.3 Methods of Studying the Mechanism of Enzymatic Reactions.- 4.4 A Semi-Empirical Method of Calculating the Enthalpy of Chemical Reactions.- 5 Factors Affecting the Efficiency of Catalysis.- 5.1 General Conceptions of Chemical Kinetics.- 5.2 Thermodynamic Feasibility of the Chemical Step.- 5.3 Collision of Reactants. Steric and Electrostatic Factors.- 5.4 Orientational Effects.- 5.5 Elementary Acts of Chemical Reactions.- 5.5.1 General Principles.- 5.5.2 Adiabatic Reactions. Activation Energy and Entropy.- 5.5.3 Inner-Sphere Non-Adiabatic Reactions. Quantum- Mechanical Selection Rules.- 5.5.4 Outer-Sphere Non-Adiabatic Reactions. Long-Range Tunnelling Processes.- 5.5.5 Synchronization of Nuclei in an Electronic Concerted Reaction.- 5.6 Activation of the Substrate in the Coordination Sphere of a Transition Metal. Specific Feature of the Structure of Clusters.- 5.7 The Principle of “Optimal Motion” in Elementary Acts of Chemical and Enzymatic Processes.- 6 Iron-Containing Proteins.- 6.1 Heme Proteins.- 6.1.1 Myoglobins and Hemoglobins.- 6.1.2 Cytochromes.- 6.1.3 Peroxidases.- 6.1.4 Catalase.- 6.1.5 Cytochrome P-450.- 6.2 Non-Heme Proteins.- 6.2.1 Ferredoxins.- 6.2.2 Iron-Sulphur Enzymes.- 6.2.3 Transport and Storage of Non-Heme Model Proteins.- 7 Iron- and Molybdenum-Containing Oxidoreductases.- 7.1 Xanthine Oxidase.- 7.1.1 General.- 7.1.2 Kinetics and Mechanism of the Xanthine Oxidase Reaction.- 7.2 Other Molybdenum-Containing Oxidoreductases.- 7.3 Nitrogenase.- 7.3.1 General.- 7.3.2 Kinetics and Mechanism of Nitrogenase Reactions.- 7.3.3 The Structure of Metal-Containing Active Sites.- 7.3.4 The ATPase Site.- 8 Copper-Containing Enzymes.- 8.1 Blue Copper-Containing Enzymes.- 8.1.1 Ceruloplasmin.- 8.1.2 Laccase and Ascorbate Oxidase.- 8.2 Copper-Containing Monooxygenases and Oxidases.- 8.3 Electron and Dioxygen Carriers.- 9 Electron-Transport and Energy-Transformation Systems.- 9.1 The Mitochondrial Respiratory Chain.- 9.2 Electron-Transfer and Water-Oxidation Systems in Photosynthesis.- 9.2.1 The Primary Photoelectron-Transport During Bacterial and Plant Photosynthesis.- 9.2.2 The Role of Manganese in the Photo-Oxidation of Water to O2.- 9.3 The Microsomal Oxidation System.- 9.4 The Methane-Hydroxylating System.- 10 Energy, Entropy and Molecular-Dynamic Relationships in Enzyme Catalysis.- 10.1 Relationships Between the Energy and Entropy Parameters of Enzymatic Processes.- 10.1.1 Experimental Data.- 10.1.2 Theoretical Treatment.- 10.2 Molecular-Dynamic Properties of Proteins and Enzymes.- 10.2.1 General.- 10.2.2 Methods of Studying the Intramolecular Dynamics of Proteins.- 10.2.3 Experimental Data on the Intramolecular Dynamics of Proteins.- 10.2.4 Theoretical Conception of the Intramolecular Dynamics of Proteins.- 10.2.5 Intramolecular Dynamics and Functional Properties of Proteins.- 11 Mechanisms of the Elementary Acts of Redox and Coupled Processes Involving Metalloenzymes and Carriers.- 11.1 One-Electron Transfer.- 11.1.1 Theoretical Concepts. General.- 11.1.2 Electron Transfer and Spin Exchange.- 11.1.3 Methods of Quantitative Estimation of the Electron-Transfer Parameters in Proteins.- 11.1.4 Experimental Data on One-Electron Transfer in Metalloenzymes.- 11.1.5 Electron Transfer in Photoseparation of Charges in Photosynthesis.- 11.2 Multi-Electron Mechanisms of Redox Reactions.- 11.2.1 General Principles.- 11.2.2 Two-Electron Reduction of Dioxygen.- 11.2.3 Oxidation and Hydroxylation Reactions Involving Heme Enzymes.- 11.2.4 The Four-Electron Mechanisms of Dinitrogen Reduction and Water Oxidation.- 11.3 The Chemical Mechanism of the ATPase Reaction in Energy-Conversion Systems.- 11.4 Conclusions.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews