Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms

Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms

by Hellmut Haberland (Editor)

Paperback(Softcover reprint of the original 1st ed. 1994)

$149.99
Choose Expedited Shipping at checkout for guaranteed delivery by Wednesday, May 1

Product Details

ISBN-13: 9783642843310
Publisher: Springer Berlin Heidelberg
Publication date: 12/08/2011
Series: Springer Series in Chemical Physics , #52
Edition description: Softcover reprint of the original 1st ed. 1994
Pages: 422
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

1 Introduction.- 1.1 What are Clusters?.- 1.2 What Makes Clusters Interesting?.- 1.3 How Does One Make Clusters?.- 1.4 Experiments with Clusters.- 1.5 Experiments Not Possible Today.- 1.6 Cluster, Tantalizing Subjects for Theoretical Studies.- 1.7 Clusters Make New Kinds of Materials.- 1.8 New Chemistry.- 1.9 Outlook.- 2 Theoretical Concepts.- 2.1 Quantum Chemistry of Clusters.- 2.1.1 Introduction.- 2.1.2 Quantum Mechanical Background.- 2.1.3 Ground State Properties of Metal Clusters.- 2.1.4 Excited States of Alkali Metal Clusters and their Spectroscopical Properties.- 2.1.5 Conclusions.- References.- 2.2 Tight-Binding and Hückel Models of Molecular Clusters.- 2.2.1 Introduction.- 2.2.2 Quantum Chemistry Background.- 2.2.3 Application to Clusters.- 2.2.4 TB Model Applied to Silicon Clusters.- 2.2.5 Applications of the Hückel Model.- 2.2.6 Conclusions.- References.- 2.3 Density Functional Calculations for Clusters.- 2.3.1 Introduction.- 2.3.2 Calculating Structures.- 2.3.3 Application to Clusters of Group VIa Elements.- 2.3.4 Structure of Phosphorus Clusters, P2 to P10.- 2.3.5 Models Based on Electron Gas Calculations.- 2.3.6 Concluding Remarks.- References.- 2.4 Transition from van der Waals to Metallic Bonding in Clusters.- 2.4.1 Introduction.- 2.4.2 Theory for the Electronic Properties of Divalent-Metal Clusters.- 2.4.3 Properties of Hgn-Clusters as a Function of Cluster Size: The Transition from van der Waals to Covalent to Metallic Bonding.- 2.4.4 Summary and Outlook.- Appendix A: Slave-Boson Approach to Electron Correlations in Small Clusters.- Appendix B: On the Size Dependence of the Ionization Energy of Small Clusters.- References.- 2.5 Analytic Cluster Models and Interpolation Formulae for Cluster Properties.- 2.5.1 Introduction.- 2.5.2 Special Role of the Analytic Cluster Model (ACM).- 2.5.3 Quantum Chemical Analytic Cluster Model (QACM).- 2.5.4 Topological Analytic Cluster Model (TACM).- 2.5.5 Theoretical Background of Interpolation Formulae.- 2.5.6 Concluding Remarks.- References.- 2.6 Shell Structure in Atoms, Nuclei and in Metals Clusters.- 2.6.1 Quantum Shells in Spherical Fermion Systems.- 2.6.2 Nuclear Shell Structure and Deformations.- 2.6.3 Shells and Supershells in Large Fermion Systems.- 2.6.4 Further Reading.- 2.6.5 Recent Developments.- References.- 2.7 Introduction to Statistical Reaction Rate Theories.- 2.7.1 Introduction.- 2.7.2 RRK Theory.- 2.7.3 RRKM Theory and the Transition State.- 2.7.4 Phase Space Theory.- 2.7.5 Product Kinetic Energy Distributions.- 2.7.6 Evaporative Cooling.- 2.7.7 Determining Cluster Dissociation Energies.- 2.7.8 Problems Associated with the Application of Statistical Theories to Clusters.- 2.7.9 Summary.- References.- 2.8 Melting and Freezing of Clusters: How They Happen and What They Mean.- 2.8.1 Introduction: The “Phases” of Clusters.- 2.8.2 Theoretical Basis.- 2.8.3 Simulations and Experiments.- 2.8.4 Implications for Bulk Matter.- References.- 3 Experimental Methods.- 3.1 Sources.- 3.1.1 Supersonic Jets.- 3.1.2 Gas Aggregation.- 3.1.3 Surface Erosion Sources.- 3.1.4 Pick-up Sources.- 3.2 Detection of Cluster Ions.- 3.3 Electron Diffraction.- 3.4 Methods for the Production of (Nearly) Mass Selected Neutral Cluster Beams.- 3.4.1 Scattering from Atomic Beams.- 3.4.2 Re-Neutralization of Ions.- 3.4.3 Summary.- 3.5 Mass Spectrometers.- 3.6 Optical Spectroscopy.- 3.7 Infrared Spectroscopy.- 3.8 Photo Electron Spectroscopy.- 3.9 Recent Developments.- References.- 4 Across the Periodic Table.- 4.1 Alkali Clusters.- 4.1.1 Introduction.- 4.1.2 Ionization of s1 Clusters.- 4.1.3 Stability of s1 Clusters.- 4.1.4 Optical Response of s1 Clusters.- References.- 4.2 Clusters of s2p1 Metals and Semiconductors.- 4.2.1 Introduction.- 4.2.2 Boron Clusters.- 4.2.3 Aluminum Clusters.- 4.2.4 Gallium, Indium, and Thallium Clusters.- 4.2.5 Conclusions.- References.- 4.3 Transition Metal Clusters: Physical Properties.- 4.3.1 Introduction.- 4.3.2 Electronic Configuration and Bonding.- 4.3.3 Mass Spectra and Magic Numbers.- 4.3.4 Ionization Energies.- 4.3.5 Dissociation and Dissociation Energies.- 4.3.6 Magnetic Properties.- 4.3.7 Optical Spectroscopy.- 4.3.8 Electron Affinities and Photoelectron Spectroscopy.- 4.3.9 Geometric Structure.- 4.3.10 Summary.- References.- 4.4 Carbon Clusters.- 4.4.1 Introduction.- 4.4.2 The Small Clusters.- 4.4.3 The Fullerenes: Cn with n ? 24.- 4.4.4 The “Buckyball” Era.- 4.4.5 Recent Developments.- References.- 4.5 Oxides and Halides of Alkali Metals.- 4.5.1 Introduction.- 4.5.2 Interatomic Forces.- 4.5.3 Neutral Clusters at Zero Temperature.- 4.5.4 Charged Clusters at Zero Temperature.- 4.5.5 Catchment Area and Free Energy.- 4.5.6 Atomic Vibrations.- 4.5.7 Photoionization of Cs-O Clusters.- 4.5.8 Recent Developments.- References.- 4.6 Rare Gas Clusters.- 4.6.1 Neutral Rare Gas Clusters in the Ground Electronic State.- 4.6.2 Potentials for Excited and Ionized Rare Gas Dimers and Clusters.- 4.6.3 Experiments with Neutral Rare Gas Clusters.- 4.6.4 Experiments with Positively Charged Rare Gas Clusters.- 4.6.5 Experiments with Negatively Charged Rare Gas Clusters.- 4.6.6 Summary.- References.- 4.7 Neutral Molecular Clusters.- 4.7.1 Introduction.- 4.7.2 Structure Calculations.- 4.7.3 Electronic Spectroscopy.- 4.7.4 Vibrational Spectroscopy.- 4.7.5 Infrared Photodissociation of Size Selected Clusters.- 4.7.6 Summary.- 4.7.7 Recent Developments.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews