Complexity Explained / Edition 1

Complexity Explained / Edition 1

by Peter Erdi
ISBN-10:
3540357777
ISBN-13:
9783540357773
Pub. Date:
11/20/2007
Publisher:
Springer Berlin Heidelberg
ISBN-10:
3540357777
ISBN-13:
9783540357773
Pub. Date:
11/20/2007
Publisher:
Springer Berlin Heidelberg
Complexity Explained / Edition 1

Complexity Explained / Edition 1

by Peter Erdi

Hardcover

$199.99 Current price is , Original price is $199.99. You
$199.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. It illuminates how complex collective behavior emerges from the parts of a system, due to the interaction between the system and its environment. Readers will learn the basic concepts and methods of complex system research. The book is not highly technical mathematically, but teaches and uses the basic mathematical notions of dynamical system theory, making the book useful for students of science majors and graduate courses.


Product Details

ISBN-13: 9783540357773
Publisher: Springer Berlin Heidelberg
Publication date: 11/20/2007
Series: Springer Complexity Series
Edition description: 2008
Pages: 397
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

1 COMPLEX SYSTEMS: THE INTELLECTUAL LANDSCAPE 1.1 The century of complexity? 1.2 Characteristics of simple and complex systems 1.2.1 System and its environment 1.2.2 Simple systems 1.2.3 Complex systems 1.3 Connecting the dots 2 HISTORY of COMPLEX SYSTEMS RESEARCH 2.1 Reductionist success stories versus the importance of organization principles 2.1.1 Reductionism and holism in quantum physics 2.1.2 Reductionism and complexity in molecular biology 2.2 Ancestors of present day complex system research 2.2.1 Systems theory 2.2.2 Cybernetics 2.2.3 Nonlinear science in action: Theory of dissipative structures, synergetics and catastrophe theory 3 FROM THE CLOCKWORK WORLD VIEW to IRREVERSIBILITY (and BACK?) 3.1 Cyclic universe versus linear time concept: the metaphysical perspective 3.1.1 Cyclic Universe 3.1.2 Linear time concepts 3.2 The Newtonian Clockwork Universe 3.2.1 The mechanical clock 3.2.2 Kepler’s integral laws 3.2.3 Newton’s differential laws, Hamilton equations, conservative oscillation, dissipation 3.3 Mechanics versus Thermodynamics 3.3.1 Heat conduction and irreversibility 3.3.2 Steam engine, feedback control, irreversibility 3.3.3 The first and second laws of thermodynamics 3.4 The birth of the modern theory of dynamical systems 3.5 Oscillations 3.5.1 The Lotka –Volterra Model 3.5.2 Stable oscillation: limit cycles 3.5.3 Quasiperiodic motions: A few words about the modern theory of dynamical systems 3.6 The chaos paradigm: then and now 3.6.1 Defining and detecting chaos 3.6.2 Structural and geometrical conditions of chaos: what is important and what is not? 3.6.3 The necessity of being chaotic 3.6.4 Controlling chaos: why and how? 3.6.5 Traveling to High-dimension land: Chaotic itinerancy 3.7 Direction of evolution 3.7.1 Dollo’s law in retrospective 3.7.2 Is something never-decreasing during evolution? 3.8 Cyclic universe: revisited. . . and criticized 4 THE DYNAMIC WORLD VIEW in ACTION 4.1 Causality, teleology and about the scope and limits of the dynamical paradigm 4.1.1 Causal versus teleological description 4.1.2 Causality, networks, emergent novelty 4.2 Chemical kinetics: a prototype of nonlinear science 4.2.1 On the structure – dynamics relationship for chemical reactions 4.2.2 Chemical kinetics as a metalanguage 4.2.3 Spatiotemporal patterns in chemistry and biology 4.3 Systems biology: the half admitted renaissance of cybernetics and systems theory 4.3.1 Life itself 4.3.2 Cells as self-referential systems 4.3.3 The old-new systems biology 4.3.4 Random Boolean networks: model framework and applications for genetic networks 4.4 Population dynamic and epidemic models: biological and social 4.4.1 Connectivity, stability, diversity 4.4.2 The epidemic propagation of infections and ideas 4.4.3 Modeling social epidemics 4.5 Evolutionary dynamics 4.6 Dynamic models of war and love 4.6.1 Lanchaster’s combat model and its variations 4.6.2 Is love different from war? 4.7 Social dynamics: some examples 4.7.1 Segregation dynamics 4.7.2 Opinion dynamics 4.8 Nonlinear dynamics in economics: some examples 4.8.1 Business cycles 4.8.2 Controlling chaos in economic models 4.9 Drug market: controlling chaos 5 THE SEARCH FOR LAWS: DEDUCTIVE VERSUS INDUCTIVE 5.
From the B&N Reads Blog

Customer Reviews