ISBN-10:
0470035617
ISBN-13:
9780470035610
Pub. Date:
11/16/2007
Publisher:
Wiley
Computational Intelligence: An Introduction / Edition 2

Computational Intelligence: An Introduction / Edition 2

by Andries P. Engelbrecht

Hardcover

Current price is , Original price is $118.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.

This item is available online through Marketplace sellers.

Product Details

ISBN-13: 9780470035610
Publisher: Wiley
Publication date: 11/16/2007
Pages: 628
Product dimensions: 6.95(w) x 9.90(h) x 1.56(d)

About the Author

Andries P. Engelbrecht is a full professor in Computer Science at the University of Pretoria, South Africa. He holds a PhD (Computer Science) from the University of Stellenbosch (1999) and has been actively involved in the research of computational intelligence since 1992. His group performs research in artificial neural networks, swarm intelligence, evolutionary computation, artificial immune systems, data and text mining, image analysis and multi-agent systems.? The research done is both theoretical where the objective is to develop new algorithms or to improve existing algorithms, and also application oriented, making use of techniques from computational intelligence to solve real-world problems. Professor Engelbrecht is actively involved in consultation to industry and contract research for industry.

Read an Excerpt

Click to read or download

Table of Contents

Figures.

Tables.

Algorithms.

Preface.

Part I INTRODUCTION.

1 Introduction to Computational Intelligence.

1.1 Computational Intelligence Paradigms.

1.2 Short History.

1.3 Assignments.

Part II ARTIFICIAL NEURAL NETWORKS.

2 The Artificial Neuron.

2.1 Calculating the Net Input Signal.

2.2 Activation Functions.

2.3 Artificial Neuron Geometry.

2.4 Artificial Neuron Learning.

2.5 Assignments.

3 Supervised Learning Neural Networks.

3.1 Neural Network Types.

3.2 Supervised Learning Rules.

3.3 Functioning of Hidden Units.

3.4 Ensemble Neural Networks.

3.5 Assignments.

4 Unsupervised Learning Neural Networks.

4.1 Background.

4.2 Hebbian Learning Rule.

4.3 Principal Component Learning Rule.

4.4 Learning Vector Quantizer-I.

4.5 Self-Organizing Feature Maps.

4.6 Assignments.

5 Radial Basis Function Networks.

5.1 Learning Vector Quantizer-II.

5.2 Radial Basis Function Neural Networks.

5.3 Assignments.

6 Reinforcement Learning.

6.1 Learning through Awards.

6.2 Model-Free Reinforcement LearningModel.

6.3 Neural Networks and Reinforcement Learning.

6.4 Assignments.

7 Performance Issues (Supervised Learning).

7.1 PerformanceMeasures.

7.2 Analysis of Performance.

7.3 Performance Factors.

7.4 Assignments.

Part III EVOLUTIONARY COMPUTATION.

8 Introduction to Evolutionary Computation.

8.1 Generic Evolutionary Algorithm.

8.2 Representation – The Chromosome.

8.3 Initial Population.

8.4 Fitness Function.

8.5 Selection.

8.6 Reproduction Operators.

8.7 Stopping Conditions.

8.8 Evolutionary Computation versus Classical Optimization.

8.9 Assignments.

9 Genetic Algorithms.

9.1 Canonical Genetic Algorithm.

9.2 Crossover.

9.3 Mutation.

9.4 Control Parameters.

9.5 Genetic Algorithm Variants.

9.6 Advanced Topics.

9.7 Applications.

9.8 Assignments.

10 Genetic Programming.

10.1 Tree-Based Representation.

10.2 Initial Population.

10.3 Fitness Function.

10.4 Crossover Operators.

10.5 Mutation Operators.

10.6 Building Block Genetic Programming.

10.7 Applications.

10.8 Assignments.

11 Evolutionary Programming.

11.1 Basic Evolutionary Programming.

11.2 Evolutionary Programming Operators.

11.3 Strategy Parameters.

11.4 Evolutionary Programming Implementations.

11.5 Advanced Topics.

11.6 Applications.

11.7 Assignments.

12 Evolution Strategies.

12.1 (1+1)-ES.

12.2 Generic Evolution Strategy Algorithm.

12.3 Strategy Parameters and Self-Adaptation.

12.4 Evolution Strategy Operators.

12.5 Evolution Strategy Variants.

12.6 Advanced Topics.

12.7 Applications of Evolution Strategies.

12.8 Assignments.

13 Differential Evolution.

13.1 Basic Differential Evolution.

13.2 DE/x/y/z.

13.3 Variations to Basic Differential Evolution.

13.4 Differential Evolution for Discrete-Valued Problems.

13.5 Advanced Topics.

13.6 Applications.

13.7 Assignments.

14 Cultural Algorithms.

14.1 Culture and Artificial Culture.

14.2 Basic Cultural Algorithm.

14.3 Belief Space.

14.4 Fuzzy Cultural Algorithm.

14.5 Advanced Topics.

14.6 Applications.

14.7 Assignments.

15 Coevolution.

15.1 Coevolution Types.

15.2 Competitive Coevolution.

15.3 Cooperative Coevolution.

15.4 Assignments.

Part IV COMPUTATIONAL SWARM INTELLIGENCE.

16 Particle Swarm Optimization.

16.1 Basic Particle Swarm Optimization.

16.2 Social Network Structures.

16.3 Basic Variations.

16.4 Basic PSO Parameters.

16.5 Single-Solution Particle SwarmOptimization.

16.6 Advanced Topics.

16.7 Applications.

16.8 Assignments.

17 Ant Algorithms.

17.1 Ant Colony OptimizationMeta-Heuristic.

17.2 Cemetery Organization and Brood Care.

17.3 Division of Labor.

17.4 Advanced Topics.

17.5 Applications.

17.6 Assignments.

Part V ARTIFICIAL IMMUNE SYSTEMS.

18 Natural Immune System.

18.1 Classical View.

18.2 Antibodies and Antigens.

18.3 TheWhite Cells.

18.4 Immunity Types.

18.5 Learning the Antigen Structure.

18.6 The Network Theory.

18.7 The Danger Theory.

18.8 Assignments.

19 Artificial Immune Models.

19.1 Artificial Immune System Algorithm.

19.2 Classical ViewModels.

19.3 Clonal Selection TheoryModels.

19.4 Network TheoryModels.

19.5 Danger TheoryModels.

19.6 Applications and Other AIS models.

19.7 Assignments.

Part VI FUZZY SYSTEMS.

20 Fuzzy Sets.

20.1 Formal Definitions.

20.2 Membership Functions.

20.3 Fuzzy Operators.

20.4 Fuzzy Set Characteristics.

20.5 Fuzziness and Probability.

20.6 Assignments.

21 Fuzzy Logic and Reasoning.

21.1 Fuzzy Logic.

21.2 Fuzzy Inferencing.

21.3 Assignments.

22 Fuzzy Controllers.

22.1 Components of Fuzzy Controllers.

22.2 Fuzzy Controller Types.

22.3 Assignments.

23 Rough Sets.

23.1 Concept of Discernibility.

23.2 Vagueness in Rough Sets.

23.3 Uncertainty in Rough Sets.

23.4 Assignments.

References.

A Optimization Theory.

A.1 Basic Ingredients of Optimization Problems.

A.2 Optimization ProblemClassifications.

A.3 Optima Types.

A.4 OptimizationMethod Classes.

A.5 Unconstrained Optimization.

A.6 Constrained Optimization.

A.7 Multi-Solution Problems.

A.8 Multi-Objective Optimization.

A.9 Dynamic Optimization Problems.

Index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews

Computational Intelligence: An Introduction 5 out of 5 based on 0 ratings. 1 reviews.
pinpointAR More than 1 year ago
I’m loving McDonalds for fast food... MyDeals247 for the best deals;))