Conformal Description of Spinning Particles
1000918925
Conformal Description of Spinning Particles
109.99 In Stock
Conformal Description of Spinning Particles

Conformal Description of Spinning Particles

by Ivan T. Todorov
Conformal Description of Spinning Particles

Conformal Description of Spinning Particles

by Ivan T. Todorov

Paperback(Softcover reprint of the original 1st ed. 1986)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers

Product Details

ISBN-13: 9783540168904
Publisher: Springer Berlin Heidelberg
Publication date: 09/01/1986
Series: Trieste Notes in Physics
Edition description: Softcover reprint of the original 1st ed. 1986
Pages: 76
Product dimensions: 6.69(w) x 9.61(h) x 0.01(d)

Table of Contents

A Guide to the List of References.- 1. The Conformal Group of a Conformally Flat Space Time and Its Twistor Representations.- 1.1 Conformal Classes of Pseudo-Riemannian Metrics.- 1.2 Connection and Curvature Forms — a Recapitulation. The Weyl Curvature Tensor.- 1.3 Global Conformal Transformations in Compactified Minkowski Space. Conformal Invariant Local Causal Order on $$ \overline {\text{M}} $$.- 1.4 The Lie Algebra of the Conformal Group and Its Twistor Representations.- 2. Twistor Flag Manifolds and SU(2,2) Orbits.- 2.1 Seven Flag Manifolds in Twistor Space. Conformal Orbits in F1 =PT.- 2.2 Points of Compactified Space-Time as 2-Planes in Twistor Space.- 2.3 An Alternative Realization of the Isomorphism $$ \overline {{\text{CM}}} \Leftrightarrow {{\text{F}}_2} $$ SU(2,2) Orbits in the Grassmann Manifold.- 2.4 Higher Flag Manifolds.- 3. Classical Phase Space of Conformal Spinning Particles.- 3.1 The Conformal Orbits F1+ and F1? as Phase Spaces of Negative and Positive Helicity O-Mass Particles.- 3.2 Canonical Symplectic Structure on Twistor Space; a Unified Phase Space Picture for Free O-Mass Particles.- 3.3 The Phase Space of Spinless Positive Mass “Conformal Particles”.- 3.4 The 10-Dimensional Phase Space of a Timelike Spinning Particle.- 3.5 The 12-Dimensional Phase Space F1,2,3?.- 4. Twistor Description of Classical Zero Mass Fields.- 4.1 Quantization of a Zero Mass Particle System: The Ladder Representations of U(2,2).- 4.2 Local Zero Mass Fields. Second Quantization.- 4.3 The Neutrino and the Photon Fields in the Twistor Picture.- 4.4 Remark on the Quantization of Higher-Dimensional Conformal Orbits.- Appendix A.Clifford Algebra Approach to Twistors. Relation to Dirac Spinors.- A.1 Clifford Algebra of O(6,?) and Bitwistor Representation of theLie Algebra SO(6,?).- A.2 The Homomorphism SL(4,?)— SO(6,?). Inequivalent 4-Dimensional Analytic Representations of SL(4,?).- A.3 Conformal Dirac Spinors.- References.
From the B&N Reads Blog

Customer Reviews