Decision Procedures: An Algorithmic Point of View
A decision procedure is an algorithm that, given a decision problem, terminates with a correct yes/no answer. Here, the authors focus on theories that are expressive enough to model real problems, but are still decidable. Specifically, the book concentrates on decision procedures for first-order theories that are commonly used in automated verification and reasoning, theorem-proving, compiler optimization and operations research. The techniques described in the book draw from fields such as graph theory and logic, and are routinely used in industry.

The authors introduce the basic terminology of satisfiability modulo theories and then, in separate chapters, study decision procedures for each of the following theories: propositional logic; equalities and uninterpreted functions; linear arithmetic; bit vectors; arrays; pointer logic; and quantified formulas. They also study the problem of deciding combined theories and dedicate a chapter to modern techniques based on an interplay between a SAT solver and a decision procedure for the investigated theory.

This textbook has been used to teach undergraduate and graduate courses at ETH Zurich, at the Technion, Haifa, and at the University of Oxford. Each chapter includes a detailed bibliography and exercises. Lecturers' slides and a C++ library for rapid prototyping of decision procedures are available from the authors' website.

1100408984
Decision Procedures: An Algorithmic Point of View
A decision procedure is an algorithm that, given a decision problem, terminates with a correct yes/no answer. Here, the authors focus on theories that are expressive enough to model real problems, but are still decidable. Specifically, the book concentrates on decision procedures for first-order theories that are commonly used in automated verification and reasoning, theorem-proving, compiler optimization and operations research. The techniques described in the book draw from fields such as graph theory and logic, and are routinely used in industry.

The authors introduce the basic terminology of satisfiability modulo theories and then, in separate chapters, study decision procedures for each of the following theories: propositional logic; equalities and uninterpreted functions; linear arithmetic; bit vectors; arrays; pointer logic; and quantified formulas. They also study the problem of deciding combined theories and dedicate a chapter to modern techniques based on an interplay between a SAT solver and a decision procedure for the investigated theory.

This textbook has been used to teach undergraduate and graduate courses at ETH Zurich, at the Technion, Haifa, and at the University of Oxford. Each chapter includes a detailed bibliography and exercises. Lecturers' slides and a C++ library for rapid prototyping of decision procedures are available from the authors' website.

69.99 In Stock
Decision Procedures: An Algorithmic Point of View

Decision Procedures: An Algorithmic Point of View

Decision Procedures: An Algorithmic Point of View

Decision Procedures: An Algorithmic Point of View

Hardcover(2008)

$69.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

A decision procedure is an algorithm that, given a decision problem, terminates with a correct yes/no answer. Here, the authors focus on theories that are expressive enough to model real problems, but are still decidable. Specifically, the book concentrates on decision procedures for first-order theories that are commonly used in automated verification and reasoning, theorem-proving, compiler optimization and operations research. The techniques described in the book draw from fields such as graph theory and logic, and are routinely used in industry.

The authors introduce the basic terminology of satisfiability modulo theories and then, in separate chapters, study decision procedures for each of the following theories: propositional logic; equalities and uninterpreted functions; linear arithmetic; bit vectors; arrays; pointer logic; and quantified formulas. They also study the problem of deciding combined theories and dedicate a chapter to modern techniques based on an interplay between a SAT solver and a decision procedure for the investigated theory.

This textbook has been used to teach undergraduate and graduate courses at ETH Zurich, at the Technion, Haifa, and at the University of Oxford. Each chapter includes a detailed bibliography and exercises. Lecturers' slides and a C++ library for rapid prototyping of decision procedures are available from the authors' website.


Product Details

ISBN-13: 9783540741046
Publisher: Springer Berlin Heidelberg
Publication date: 07/07/2008
Series: Texts in Theoretical Computer Science. An EATCS Series
Edition description: 2008
Pages: 306
Product dimensions: 6.10(w) x 9.20(h) x 0.90(d)

About the Author

Daniel Kroening is a professor in the Dept. of Computer Science at the University of Oxford; his interests include automated verification, software engineering, and programming languages. Ofer Strichman is a professor in the faculty of industrial engineering and management at the Technion; his research interests include formal verification of software and hardware, and decision procedures for fragments of first-order logic.

Table of Contents

and Basic Concepts.- Decision Procedures for Propositional Logic.- Equality Logic and Uninterpreted Functions.- Decision Procedures for Equality Logic and Uninterpreted Functions.- Linear Arithmetic.- Bit Vectors.- Arrays.- Pointer Logic.- Quantified Formulas.- Deciding a Combination of Theories.- Propositional Encodings.
From the B&N Reads Blog

Customer Reviews