Detonation of Condensed Explosives

Detonation of Condensed Explosives

by Roger Cheret

Paperback(Softcover reprint of the original 1st ed. 1993)

$139.99
Choose Expedited Shipping at checkout for guaranteed delivery by Friday, March 22

Product Details

ISBN-13: 9781461392866
Publisher: Springer New York
Publication date: 10/18/2011
Series: Shock Wave and High Pressure Phenomena
Edition description: Softcover reprint of the original 1st ed. 1993
Pages: 427
Sales rank: 1,087,975
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

0 and v(?p/?e)(v, e) > ?2.- 1.4. Properties if, in Addition, (?p/?v)(v, e) < 0.- 1.5. Conclusion.- 2. Properties of the Crussard Curve (H).- 2.1. Introduction.- 2.2. Differential Relations on (H).- 2.3. Chapman-Jouguet Points on (H).- 2.4. Hugoniot Curves over (D).- 2.5. Point at Infinity.- 2.6. Intersection of (H) and (Rµ0).- 3. Considerations Specific to Detonations.- 3.1. Properties of the Detonation Arc (H+).- 3.2. Jouguet’s Conjecture.- 3.3. Current Experimental Results.- 3.4. Interpretation of Observed Detonations.- 4. Particular Case of a Polytropic Fluid.- 4.1. Definition and General Properties.- 4.2. Shock: Pressure and Mass Volume Jumps.- 4.3. Shock: Normal Velocity Jump and Deflection.- 5. Some Mathematical Aspects.- 5.1. Introduction.- 5.2. Characteristic Curves.- 5.3. Weak Solutions.- 5.4. Nonuniqueness and Selection Criteria.- 5.5. The Case of Systems.- III The Detonation Layer.- 1. General Features of the Model.- 1.1. Introduction.- 1.2. Conservation Equations in Local Variables.- 1.3. Evolution of Chemical Species.- 1.4. Characteristic Quantities and External Variables.- 1.5. Perturbation Parameter and Internal Variables.- 1.6. Zero-Order Structures: Notion of Quasi C-J Detonation.- 2. Zero-Order Internal Structure.- 2.1. Equations.- 2.2. Existence and Behavior at Infinity.- 3. Zero-Order External Downstream Structure.- 3.1. Equations.- 3.2. Behavior in Downstream State of a Simple Detonation.- 4. Zero-Order Composite Structure of a Simple Detonation.- 4.1. Description in the Neighborhood of the Downstream State.- 4.2. Rules of Propagation; Notion of Autonomous Detonation.- 5. One-Dimensional Detonations.- 5.1. Zero-Order External Structure Equations.- 5.2. Divergent Simple Detonation (N = 1 or 2).- 5.3. Convergent Simple Detonation.- 6. The Beginnings and Limits of Detonation.- 6.1. Priming Boundary and Free Boundaries.- 6.2. Birth of a Simple Detonation.- 6.3. Extinction or Bifurcation of an Autonomous Simple Detonation.- References to Part One.- Two Molecular Mechanisms of Explosive Decomposition.- IV Sensitivity to “Shock” and Molecular Structure.- 1. Introduction.- 2. Concept of Explosophore Group.- 3. The Case of Nitro Explosives.- 3.1. Sensitivity to “Shock” and Amount of NO2 Released.- 3.2. Sensitivity to “Shock” and Conditions of Release of NO2.- V Sensitivity to “Shock” and Electronic Structure.- 1. Electronic Structure in the Fundamental State.- 1.1. Introduction.- 1.2. Distribution of Electrons in the Isolated Molecule.- 1.3. Influence of the Crystalline Environment.- 1.4. Electronic Structure Before Excitation.- 2. Electronic Structure After Excitation.- 2.1. Introduction.- 2.2. Molecular Parameter of Sensitivity to “Shock”.- 2.3. Notion of Explosophore Bond.- 2.4. Sensitivity Scale.- 3. Conclusion.- VI Explosive Decomposition.- 1. Reaction Mechanisms.- 1.1. Monomolecular Decomposition.- 1.2. Polymolecular Decomposition.- 2. Theoretical Approach.- 2.1. Molecular Population Downstream of a Shock Wave.- 2.2. Birth of Explosive Decomposition.- 3. Experimental Approach.- 3.1. The Principles of High-Speed Raman Spectrometry.- 3.2. Experimental Set-Up.- 3.3. Results and Discussion.- 4. Conclusion.- References to Part Two.- Three Macroscopic Mechanisms of Generation of Detonation.- VII Cooperative Mechanisms.- 1. Ignition.- 1.1. The Hot Spot Concept.- 1.2. Ignition by Pore Collapse.- 1.3. Ignition by Mesoscopic Shear.- 2. Induction.- 2.1. From Ignition to Propagation.- 2.2. Coupling to the Reaction Scheme.- References.- VIII Coupling of Decomposition and Motion.- 1. Introduction.- 2. Modeling of Two-Component Reactive Fluid.- 2.1. Balance Equations for Each Component.- 2.2. Balance Equations for the Mixture.- 2.3. Comparison.- 3. One-Dimensional Rectilinear Reactive Flow.- 3.1. Model and Reference Algorithm.- 3.2. Modifications According to Source Term.- 3.3. Modifications According to Exchange Terms.- 3.4. The Use of Pseudopotential p(v, e).- 4. Decomposition Law.- 4.1. Temporary Solutions.- 4.2. From Hot Spot to Reactivity.- 4.3. Ingredients of a Unified Theory.- References.- IX Generation of Detonation by Plane Shock.- 1. From Shock to Detonation.- 1.1. Field of Investigation.- 1.2. General Aspects of Propagation.- 1.3. Time and Run to Detonation.- 2. “Sensitivity” of an Explosive Substance.- 2.1. Detonability Thresholds by One-Dimensional Impact.- 2.2. Detonability Thresholds by Two-Dimensional Impact.- 2.3. Nonmolecular Factors of “Sensitivity”.- 3. Reactivity of an Explosive Substance.- 3.1. Unified Model.- 3.2. Lagrangian Analysis.- 3.3. Eulerian Approximation.- References.- Four The Dynamic Characterization of Explosives.- X Experimental Methods.- 1. Optical Techniques.- 1.1. Light Sources.- 1.2. High-Speed Cinematography and Photography.- 1.3. Slit Scanning Cameras.- 1.4. Velocimetry by Doppler Laser Interferometry.- 2. Electronic Techniques.- 2.1. Probes and Gauges.- 2.2. Recording Methods.- 3. Radiographic Techniques.- 3.1. Flash Radiographic Generators.- 3.2. Recording Techniques.- 3.3. Plate Processing Techniques.- 4. Stress Generators.- 4.1. Explosive Generators.- 4.2. Launchers.- References.- XI Elementary Configurations of Simple Detonation.- 1. Tradition: Good Points and Bad Points.- 2. Axisymmetric Configurations.- 2.1. Traditional Regime.- 2.2. Lateral Priming Regime.- 3. Spherical Configurations.- 3.1. Explosion Regime.- 3.2. Implosion Regime.- 4. Break of a Quasi C-J Autonomous Detonation.- 4.1. Introduction.- 4.2. From Frontal Break to Oblique Break.- 4.3. From Automorphous Detonation to Guided Detonation.- References.- XII Numerical Predictions.- 1. Purpose and Value of Prediction.- 1.1. Prediction Levels and Elementary Problem.- 1.2. Preliminary Questions.- 1.3. Equations of the Current Point of (D).- 1.4. Normal Form of the Internal Energy Variation e — e0.- 1.5. Normal Form of the Thermodynamic Coefficients.- 1.6. Validation Criteria.- 2. Functions of State.- 2.1. Introduction to Estimation of F.- 2.2. Semiempirical Estimations of F.- 2.3. JCZ Estimations of F.- 2.4. Ab initio Estimations of F.- 2.5. Introduction to the Estimation of ?j.- 3. Numerical Codes.- 3.1. Algorithms.- 3.2. Thermochemical Data.- 3.3. Ab initio Parameters and Floating Parameters.- 4. Results.- 4.1. Points of Comparison.- 4.2. Analytical Representation of (D).- 4.3. Singular Lines on (D).- References.- Epilogue.- Appendices (A, B, C, D, E).- Signs, Symbols, and Characters.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews