Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations
Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. The topics discussed include hybrid formulations, Schwarz, substructuring and Lagrange multiplier methods for elliptic equations, computational issues, least squares-control methods, multilevel methods, non-self adjoint problems, parabolic equations, saddle point applications (Stokes, porous media and optimal control), non-matching grid discretizations, heterogeneous models, fictitious domain methods, variational inequalities, maximum norm theory, eigenvalue problems, optimization problems and the Helmholtz scattering problem. Selected convergence theory is also included.

1101633446
Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations
Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. The topics discussed include hybrid formulations, Schwarz, substructuring and Lagrange multiplier methods for elliptic equations, computational issues, least squares-control methods, multilevel methods, non-self adjoint problems, parabolic equations, saddle point applications (Stokes, porous media and optimal control), non-matching grid discretizations, heterogeneous models, fictitious domain methods, variational inequalities, maximum norm theory, eigenvalue problems, optimization problems and the Helmholtz scattering problem. Selected convergence theory is also included.

109.99 In Stock
Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations

Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations

by Tarek Mathew
Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations

Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations

by Tarek Mathew

Paperback(2008)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. The topics discussed include hybrid formulations, Schwarz, substructuring and Lagrange multiplier methods for elliptic equations, computational issues, least squares-control methods, multilevel methods, non-self adjoint problems, parabolic equations, saddle point applications (Stokes, porous media and optimal control), non-matching grid discretizations, heterogeneous models, fictitious domain methods, variational inequalities, maximum norm theory, eigenvalue problems, optimization problems and the Helmholtz scattering problem. Selected convergence theory is also included.


Product Details

ISBN-13: 9783540772057
Publisher: Springer Berlin Heidelberg
Publication date: 05/05/2008
Series: Lecture Notes in Computational Science and Engineering , #61
Edition description: 2008
Pages: 770
Product dimensions: 6.10(w) x 9.20(h) x 1.70(d)

Table of Contents

Decomposition Frameworks.- Schwarz Iterative Algorithms.- Schur Complement and Iterative Substructuring Algorithms.- Lagrange Multiplier Based Substructuring: FETI Method.- Computational Issues and Parallelization.- Least Squares-Control Theory: Iterative Algorithms.- Multilevel and Local Grid Refinement Methods.- Non-Self Adjoint Elliptic Equations: Iterative Methods.- Parabolic Equations.- Saddle Point Problems.- Non-Matching Grid Discretizations.- Heterogeneous Domain Decomposition Methods.- Fictitious Domain and Domain Imbedding Methods.- Variational Inequalities and Obstacle Problems.- Maximum Norm Theory.- Eigenvalue Problems.- Optimization Problems.- Helmholtz Scattering Problem.
From the B&N Reads Blog

Customer Reviews