ISBN-10:
1402086792
ISBN-13:
9781402086793
Pub. Date:
06/19/2008
Publisher:
Springer Netherlands
Elastic Multibody Dynamics: A Direct Ritz Approach / Edition 1

Elastic Multibody Dynamics: A Direct Ritz Approach / Edition 1

by Hartmut Bremer

Hardcover

Current price is , Original price is $169.99. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Product Details

ISBN-13: 9781402086793
Publisher: Springer Netherlands
Publication date: 06/19/2008
Series: Intelligent Systems, Control and Automation: Science and Engineering , #35
Edition description: 2008
Pages: 452
Product dimensions: 6.40(w) x 9.40(h) x 1.20(d)

Table of Contents

1. INTRODUCTION;
1.1 Background; 1.2 Contents; 2. AXIOMS AND PRINCIPLES; 2.1 Axioms; 2.2 Principles – the 'Differential' Form; 2.3 Minimal Representation; 2.3.1 Virtual Displacements and Variations; 2.3.2 Minimal Coordinates and Minimal Velocities; 2.3.3 The Transitivity Equation; 2.4 The Central Equation of Dynamics; 2.5 Principles – the 'Minimal' Form; 2.6 Rheonomic and Non-holonomic Constraints; 2.7 Conclusions; 3. KINEMATICS; 3.1 Translation and Rotation; 3.1.1 Rotation Axis and Rotation Angle; 3.1.2 Transformation Matrices; 3.1.2.1 Rotation Vector Representation; 3.1.2.2 Cardan Angle Representation; 3.1.2.3 Euler Angle Representation; 3.1.3 Comparison; 3.2 Velocities; 3.2.1 Angular Velocity; 3.2.1.1 General Properties; 3.2.1.2 Rotation Vector Representation; 3.2.1.3 Cardan Angle Representation; 3.2.1.4 Euler Angle Representation; 3.3 State Space; 3.3.1 Kinematic Differential Equations; 3.3.1.1 Rotation Vector Representation; 3.3.1.2 Cardan Angle Representation; 3.3.1.3 Euler Angle Representation; 3.3.2 Summary Rotations; 3.4 Accelerations; 3.5 Topology – the Kinematic Chain; 3.6 Discussion; 4. RIGID MULTIBODY SYSTEMS; 4.1 Modeling aspects; 4.1.1 On Mass Point Dynamics; 4.1.2 The Rigidity Condition; 4.2 Multibody Systems; 4.2.1 Kinetic Energy; 4.2.2 Potentials; 4.2.2.1 Gravitation; 4.2.2.2 Springs; 4.2.3 Rayleigh’s Function; 4.2.4 Transitivity Equation; 4.2.5 The Projection Equation; 4.3 The Triangle of Methods; 4.3.1 Analytical Methods; 4.3.2 Synthetic Procedure(s); 4.3.3 Analytical vs. Synthetic Method(s); 4.4 Subsystems; 4.4.1 Basic Element: The Rigid Body; 4.4.1.1 Spatial Motion; 4.4.1.2 Plane Motion; 4.4.2 Subsystem Assemblage; 4.4.2.1 Absolute Velocities; 4.4.2.2 Relative Velocities; 4.4.2.3 Prismatic Joint/Revolute Joint – Spatial Motion; 4.4.3 Synthesis; 4.4.3.1 Minimal Representation; 4.4.3.2 Recursive Representation; 4.5 Constraints; 4.5.1 Inner Constraints; 4.5.2 Additional Constraints; 4.5.2.1 Jacobi Equation;4.5.2.2 Minimal Representation; 4.5.2.3 Recursive Representation; 4.5.2.4 Constraint Stabilization; 4.6 Segmentation: Elastic Body Representation; 4.6.1 Chain and Thread (Plane Motion); 4.6.2 Chain, Thread, and Beam; 4.7 Conclusion; 5. ELASTIC MULTIBODY SYSTEMS – THE PARTIAL DIFFERENTIAL EQUATIONS; 5.1 Elastic Potential; 5.1.1 Linear Elasticity; 5.1.2 Inner Constraints, Classification of Elastic Bodies; 5.1.3 Disk and Plate; 5.1.4 Bea; 5.2 Kinetic Energy; 5.3 Checking Procedures; 5.3.1 HAMILTON’s Principle and the Analytical Methods; 5.3.2 Projection Equation; 5.4 Single Elastic Body – Small Motion Amplitudes; 5.4.1 Beams; 5.4.2 Shells and Plates; 5.5 Single Body – Gross Motion; 5.5.1 The Elastic Rotor; 5.5.2 The Helicopter Blade (1); 5.6 Dynamical Stiffening; 5.6.1 The CAUCHY Stress Tensor; 5.6.2 The TREFFTZ (or 2nd Piola-Kirchhoff) Stress Tensor; 5.6.3 Second-Order Beam Displacement Fields; 5.6.4 Dynamical Stiffening Matrix; 5.6.5 The Helicopter Blade (2); 5.7 Multibody Systems – Gross Motion; 5.7.1 The Kinematic Chain; 5.7.2 Minimal Velocities; 5.7.3 Motion Equations; 5.7.3.1 Dynamical Stiffening; 5.7.3.2 Equations of Motion; 5.7.4 Boundary Conditions; 5.8 Conclusion; 6. ELASTIC MULTIBODY SYSTEMS – THE SUBSYSTEM ORDINARY DIFFERENTIAL EQUATIONS; 6.1 Galerkin Method; 6.1.1 Direct Galerkin Method; 6.1.2 Extended Galerkin Method; 6.2 (Direct) Ritz Method; 6.3 Rayleigh Quotient; 6.4 Single Elastic Body – Small Motion Amplitudes; 6.4.1 Plate; 6.4.1.1 Equations of motion; 6.4.1.2 Basics;; 6.4.1.3 Shape Functions: Spatial Separation Approach; 6.4.1.4 Expansion in Terms of Beam Functions; 6.4.1.5 Convergence and Solution; 6.4.2 Torsional Shaft; 6.4.2.1 Eigenfunctions; 6.4.2.2 Motion Equations; 6.4.2.3 Shape Functions; 6.4.3 Change-Over Gear; 6.5 Single Elastic Body – Gross Motion; 6.5.1 The Elastic Rotor; 6.5.1.1 Rheonomic Constraint; 6.5.1.2 Choice of Shape Functions – Prolate Rotor ( = 0); 6.5.1.3 Choice of Shape Functions – Oblate

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews