Electromechanical Sensors and Actuators

Electromechanical Sensors and Actuators

by Ilene J. Busch-Vishniac

Paperback(Softcover reprint of the original 1st ed. 1999)

Eligible for FREE SHIPPING
  • Want it by Wednesday, October 24  Order now and choose Expedited Shipping during checkout.


Electromechanical Sensors and Actuators by Ilene J. Busch-Vishniac

Unlike other treatments of sensors or actuators, this book approaches the devices from the point of view of the fundamental coupling mechanism between electrical and mechanical systems. The book begins with a discussion of systems analysis as a tool for modeling transducers, then turns to a detailed discussion of transduction mechanisms. The book concludes with an input/output analysis of transducers. 378 illus.

Product Details

ISBN-13: 9781461271420
Publisher: Springer New York
Publication date: 11/20/2012
Series: Mechanical Engineering Series
Edition description: Softcover reprint of the original 1st ed. 1999
Pages: 343
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

I Basic Tools for Transducer Modeling.- 1 Introduction.- 1.1 What Is a Transducers.- 1.2 Why Study Transducers?.- 1.3 Division of Transducers into Sensors and Actuators.- 1.4 Transducers as Part of a Measurement or Control System.- 1.5 Historical Perspective.- 1.6 Organization of this Book.- 2 System Models.- 2.1 System Analogies.- 2.2 Ideal 1-Port Elements.- 2.2.1 Comments on Modeling and 1-Port Elements.- 2.3 Circuit Models.- 2.4 Bond Graph Models.- 2.5 Nonenergic 2-Port Elements.- 2.6 Multiport Energic Elements.- 2.7 Model Analysis.- 2.8 References.- II Transduction Mechanisms.- 3 Transduction Based on Changes in the Energy Stored in an Electric Field.- 3.1 Electric Fields and Forces.- 3.2 Transducers Made with a Variable Gap Parallel Plate Capacitor..- 3.2.1 Relating Displacement and Voltage.- 3.2.2 Relating Force and Voltage.- 3.2.3 Relating Force and Charge.- 3.3 Transducers Using Other Means of Varying the Capacitance in a Parallel Plate Capacitor.- 3.3.1 Variable Area.- 3.3.2 Varying Permittivity.- 3.4 Transducers with Cylindrical Geometry.- 3.5 Gradient Transduction Using Two Dielectrics.- 3.6 Electrostrictive Transduction.- 3.7 Summary.- 3.8 References.- 4 Transduction Based on Changes in the Energy Stored in a Magnetic Field.- 4.1 Magnetic Systems.- 4.1.1 Magnetic Materials.- 4.1.2 Magnetic Circuits.- 4.2 Variable Reluctance Transducers with Varying Gap.- 4.2.1 Relating Displacement and MAGNETOMOTANCE.- 4.2.2 Relating Force and Magnetomotance.- 4.2.3 Relating Force and Flux.- 4.3 Variable Reluctance Transducers with Varying Permeability and Area.- 4.3.1 Variable Area.- 4.3.2 Variable Permeability.- 4.4 Gradient Transduction with Two Ferromagnetic Materials.- 4.5 Magnetostrictive Transduction.- 4.6 Eddy Current Transducers.- 4.7 Summary.- 4.8 References.- 5 Piezoelectricity and Pyroelectricity.- 5.1 Piezoelectric Relations.- 5.2 Piezoelectric Materials.- 5.3 Piezoelectric Structures in Transducers.- 5.4 Models of Piezoelectricity.- 5.5 Examples of Piezoelectric Transducers.- 5.5.1 Examples of Broadband Transducers Using One Piezoelectric Element or a Stack of Parallel Piezoelectric Elements.- 5.5.2 Examples of Resonant Transducers Using a Single Piezoelectric Element or Element Stack.- 5.5.3 Example of a Transducer Using Multiple Nonparallel Piezoelectric Elements.- 5.5.4 Examples of Transducers which Are Unconventional.- 5.6 Pyroelectricity.- 5.7 Summary.- 5.8 References.- 6 Linear Inductive Transduction Mechanisms.- 6.1 Piezomagnetism.- 6.2 Pyromagnetism.- 6.3 Charged Particle Interactions.- 6.3.1 Examples of Transducers Based on the Motion of Charged Particles in a Magnetic Field.- 6.4 Hall Effect Transducers.- 6.4.1 Example Hall Effect Sensors.- 6.5 Summary.- 6.6 References.- 7 Transduction Based on Changes in the Energy Dissipated.- 7.1 Conductive Switches.- 7.2 Continuously Variable Conductivity Transducers.- 7.3 Potentiometric Devices.- 7.4 Piezoresistivity.- 7.4.1 Material Description.- 7.4.2 Strain Gauge Structures.- 7.4.3 Electrical Operation.- 7.5 Thermoresistivity.- 7.6 Thermoelectricity.- 7.6.1 Seebeck Effect.- 7.6.2 Peltier and Thomson Effects.- 7.7 Magnetoresistivity.- 7.8 Shape Memory Alloys in Transduction.- 7.9 Summary.- 7.10 References.- 8 Optomechanical Sensors.- 8.1 Quantum Detectors.- 8.1.1 Photoconductive Sensors.- 8.2 Fiber Optic Waveguide Fundamentals.- 8.3 Intensity-Modulated Fiber Optic Sensors.- 8.4 Phase-Modulated Sensors.- 8.5 Photostriction.- 8.6 Summary.- 8.7 References.- III Analysis of Transducers.- 9 2-port Theory.- 9.1 Basic 2-Port Equations.- 9.2 Reciprocity.- 9.3 Connected 2-Ports.- 9.4 Transfer Matrix and Sensitivity.- 9.5 Wave Matrix Representation and Efficiency.- 9.6 Summary.- 9.7 References.- 10 Response Characteristics.- 10.1 Response Characteristics Defined.- 10.1.1 Example of Transducer Selection Based on Specifications.- 10.2 Calibration.- 10.3 Frequency and Time Scaling.- 10.4 Summary.- 10.5 References.- 11 Practical Considerations.- 11.1 Digitization of Analog Signals.- 11.2 Signal Conditioning.- 11.2.1 Filtering.- 11.2.2 Amplifying.- 11.3 Novel Sensing/Actuation Techniques.- 11.3.1 Frequency Detection Schemes.- 11.3.2 Lapsed Time Detection.- 11.4 Spatially Distributed Transducers.- 11.5 Summary.- 11.6 References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews