Elementary engineering fracture mechanics

Elementary engineering fracture mechanics

by D. Broek

Paperback(1982)

$119.99 View All Available Formats & Editions
Use Standard Shipping. For guaranteed delivery by December 24, use Express or Expedited Shipping.

Product Details

ISBN-13: 9789401084253
Publisher: Springer Netherlands
Publication date: 10/12/2011
Edition description: 1982
Pages: 469
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

I Principles.- 1 Summary of basic problems and concepts.- 1.1 Introduction.- 1.2 A crack in a structure.- 1.3 The stress at a crack tip.- 1.4 The Griffith criterion.- 1.5 The crack opening displacement criterion.- 1.6 Crack propagation.- 1.7 Closure.- 2 Mechanisms of fracture and crack growth.- 2.1 Introduction.- 2.2 Cleavage fracture.- 2.3 Ductile fracture.- 2.4 Fatigue cracking.- 2.5 Environment assisted cracking.- 2.6 Service failure analysis.- 3 The elastic crack-tip stress field.- 3.1 The Airy stress function.- 3.2 Complex stress functions.- 3.3 Solution to crack problems.- 3.4 The effect of finite size.- 3.5 Special cases.- 3.6 Elliptical cracks.- 3.7 Some useful expressions.- 4 The crack tip plastic zone.- 4.1 The Irwin plastic zone correction.- 4.2 The Dugdale approach.- 4.3 The shape of the plastic zone.- 4.4 Plane stress versus plane strain.- 4.5 Plastic constraint factor.- 4.6 The thickness effect.- 5 The energy principle.- 5.1 The energy release rate.- 5.2 The criterion for crack growth.- 5.3 The crack resistance (R curve).- 5.4 Compliance.- 5.5 The J integral.- 5.6 Tearing modulus.- 5.7 Stability.- 6 Dynamics and crack arrest.- 6.1 Crack speed and kinetic energy.- 6.2 The dynamic stress intensity and elastic energy release rate.- 6.3 Crack branching.- 6.4 The principles of crack arrest.- 6.5 Crack arrest in practice.- 6.6 Dynamic fracture toughness.- 7 Plane strain fracture toughness.- 7.1 The standard test.- 7.2 Size requirements.- 7.3 Non-linearity.- 7.4 Applicability.- 8 Plane stress and transitional behaviour.- 8.1 Introduction.- 8.2 An engineering concept of plane stress.- 8.3 The R curve concept.- 8.4 The thickness effect.- 8.5 Plane stress testing.- 8.6 Closure.- 9 Elastic-plastic fracture.- 9.1 Fracture beyond general yield.- 9.2 The crack tip opening displacement.- 9.3 The possible use of the CTOD criterion.- 9.4 Experimental determination of CTOd.- 9.5 Parameters affecting the critical CTOD.- 9.6 Limitations, fracture at general yield.- 9.7 Use of the J integral.- 9.8 Limitations of the J integral.- 9.9 Measurement of JIc and JR.- 9.10 Closure.- 10 Fatigue crack propagation.- 10.1 Introduction.- 10.2 Crack growth and the stress intensity factor.- 10.3 Factors affecting crack propagation.- 10.4 Variable amplitude service loading.- 10.5 Retardation models.- 10.6 Similitude.- 10.7 Small cracks.- 10.8 Closure.- 11 Fracture resistance of materials.- 11.1 Fracture criteria.- 11.2 Fatigue cracking criteria.- 11.3 The effect of alloying and second phase particles.- 11.4 Effect of processing, anisotropy.- 11.5 Effect of temperature.- 11.6 Closure.- II Applications.- 12 Fail-safety and damage tolerance.- 12.1 Introduction.- 12.2 Means to provide fail-safety.- 12.3 Required information for fracture mechanics approach.- 12.4 Closure.- 13 Determination of stress intensity factors.- 13.1 Introduction.- 13.2 Analytical and numerical methods.- 13.3 Finite element methods.- 13.4 Experimental methods.- 14 Practical problems.- 14.1 Introduction.- 14.2 Through cracks emanating from holes.- 14.3 Corner cracks at holes.- 14.4 Cracks approaching holes.- 14.5 Combined loading.- 14.6 Fatigue crack growth under mixed mode loading.- 14.7 Biaxial loading.- 14.8 Fracture toughness of weldments.- 14.9 Service failure analysis.- 15 Fracture of structures.- 15.1 Introduction.- 15.2 Pressure vessels and pipelines.- 15.3 “Leak-bcfore-break” criterion.- 15.4 Material selection.- 15.5 The use of the J integral for structural analysis.- 15.6 Collapse analysis.- 15.7 Accuracy of fracture calculations.- 16 Stiffened sheet structures.- 16.1 Introduction.- 16.2 Analysis.- 16.3 Fatigue crack propagation.- 16.4 Residual strength.- 16.5 The R curve and the residual strength of stiffened panels.- 16.6 Other analysis methods.- 16.7 Crack arrest.- 16.8 Closure.- 17 Prediction of fatigue crack growth.- 17.1 Introduction.- 17.2 The load spectrum.- 17.3 Approximation of the stress spectrum.- 17.4 Generation of a stress history.- 17.5 Crack growth integration.- 17.6 Accuracy of predictions.- 17.7 Safety factors.- Author index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews