Encyclopedia of Complexity and Systems Science
Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, shastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other natural disasters; the dynamics of turbulent flows; lasers or fluids in physics, microprocessor design; macromolecular assembly in chemistry and biophysics; brain functions in cognitive neuroscience; climate change; ecosystem management; traffic management; and business cycles. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. This unique work will extend the influence of complexity and system science to a much wider audience than has been possible to date.

1146767750
Encyclopedia of Complexity and Systems Science
Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, shastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other natural disasters; the dynamics of turbulent flows; lasers or fluids in physics, microprocessor design; macromolecular assembly in chemistry and biophysics; brain functions in cognitive neuroscience; climate change; ecosystem management; traffic management; and business cycles. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. This unique work will extend the influence of complexity and system science to a much wider audience than has been possible to date.

4869.0 In Stock
Encyclopedia of Complexity and Systems Science

Encyclopedia of Complexity and Systems Science

by Springer US
Encyclopedia of Complexity and Systems Science

Encyclopedia of Complexity and Systems Science

by Springer US

Hardcover(2009)

$4,869.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, shastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other natural disasters; the dynamics of turbulent flows; lasers or fluids in physics, microprocessor design; macromolecular assembly in chemistry and biophysics; brain functions in cognitive neuroscience; climate change; ecosystem management; traffic management; and business cycles. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. This unique work will extend the influence of complexity and system science to a much wider audience than has been possible to date.


Product Details

ISBN-13: 9780387758886
Publisher: Springer US
Publication date: 06/26/2009
Series: Springer Reference
Edition description: 2009
Pages: 10398
Product dimensions: 8.27(w) x 11.69(h) x 0.41(d)

About the Author

Dr. Meyers has more than 20 patents and 50 technical papers in the fields of phohemistry, pollution control, inorganic reactions, organic reactions, luminescence phenomena and polymers. He has published in primary literature journals including Science and the Journal of the American Chemical Society, and is listed in Who’s Who in America and Who’s Who in the World. Dr Meyers’ scientific achievements have been reviewed in feature articles in the popular press in publications such as The New York Times Science Supplement and The Wall Street Journal as well as more specialized publications such as Chemical Engineering and Coal Age. A public service film was produced by the Environmental Protection Agency of Dr. Meyers' chemical desulfurization invention for air pollution control.

Dr Meyers conceived and has served as Editor-in-Chief of the Academic Press (now Elsevier) Encyclopedia of Physical Science and Technology. This is an 18-volume publication of 780 twenty-page articles written to an audience of university students and practicing professionals. This encyclopedia, first published in 1987, was very successful, and because of this, was revised and reissued in 1992 as a second edition. The Third Edition was published in 2001 and is now on-line. Dr Meyers has completed two editions of the Encyclopedia of Molecular Cell Biology and Molecular Medicine for Wiley VCH publishers (1995 and 2004). These cover molecular and cellular level genetics, biochemistry, pharmacology, diseases and structure determination as well as cell biology. His eight-volume Encyclopedia of Environmental Analysis and Remediation was published in 1998 by John Wiley & Sons and his 15- volume Encyclopedia of Analytical Chemistry was published in 2000, also by John Wiley & Sons.

Dr. Meyers has worked with more than 20 Nobel laureates during his career.

Table of Contents

Hundreds of articles on the mathematical and modeling basis for approaching complex systems, together with hundreds more on the progress using these tools in the fields of physics, econometrics, ecosystems, climate change, weather prediction, nanoelectronics, complex networks, quantum computing, chemistry, astrophysics, geophysics, systems biology, physical biology, bioinformatics, medicine, system dynamics, engineering, control and dynamical systems, and robotics as well as social, economics and political sciences.

The articles are organized in an A-Z format.

For an overview of the Topical Section, the Topical Table of Contents and the complete list of articles and their authors, see the links on the right.

From the B&N Reads Blog

Customer Reviews