Engineering Compendium on Radiation Shielding: Volume 2: Shielding Materials

Engineering Compendium on Radiation Shielding: Volume 2: Shielding Materials

Paperback(Softcover reprint of the original 1st ed. 1975)

$139.99
Choose Expedited Shipping at checkout for guaranteed delivery by Wednesday, March 27

Product Details

ISBN-13: 9783642650031
Publisher: Springer Berlin Heidelberg
Publication date: 12/21/2011
Edition description: Softcover reprint of the original 1st ed. 1975
Pages: 436
Product dimensions: 8.27(w) x 11.02(h) x 0.04(d)

Table of Contents

9 Shielding Materials.- 9.1. Materials against gamma rays.- 9.1.1. Lead and lead alloys.- 9.1.1.1. Introduction.- 9.1.1.2. Occurrence and extraction.- 9.1.1.3. Properties.- 9.1.1.4. Fabrication.- 9.1.1.5. Applications and design considerations.- 9.1.2. Steel (iron and iron alloys).- 9.1.2.1. Introduction.- 9.1.2.2. Occurrence and extraction.- 9.1.2.3. Properties.- 9.1.2.4. Fabrication.- 9.1.2.5. Applications and design considerations.- 9.1.3. Uranium.- 9.1.3.1. Introduction.- 9.1.3.2. Occurrence and extraction.- 9.1.3.3. Properties.- 9.1.3.4. Fabrication.- 9.1.3.5. Applications and design considerations.- 9.1.4. Tungsten.- 9.1.4.1. Introduction.- 9.1.4.2. Occurrence and extraction.- 9.1.4.3. Properties.- 9.1.4.4. Fabrication.- 9.1.4.5. Applications and design considerations.- 9.1.5. Bismuth.- 9.1.5.1. Introduction.- 9.1.5.2. Occurrence and extraction.- 9.1.5.3. Properties.- 9.1.5.4. Fabrication.- 9.1.6. Copper.- 9.1.6.1. Introduction.- 9.1.6.2. Occurrence and extraction.- 9.1.6.3. Properties.- 9.1.6.4. Fabrication.- 9.1.7. Aluminum.- 9.1.7.1. Introduction.- 9.1.7.2. Occurrence and extraction.- 9.1.7.3. Properties.- 9.1.7.4. Fabrication.- 9.1.8. Soil.- 9.1.8.1. Introduction.- 9.1.8.2. Method of calculation.- 9.1.9. Ceramics.- 9.1.9.1. Composition, properties and technology.- 9.1.9.2. Properties of commonly used ceramics.- 9.1.9.3. Properties of special ceramics for shielding.- 9.1.9.4. Shapes of shielding ceramic products.- 9.1.9.5. Utilization of ceramics.- 9.1.10. Water.- 9.1.10.1. Mechanical and technological properties of water.- 9.1.10.2. Decomposition of water by radiation.- 9.1.10.3. Corrosion problems in water.- 9.1.10.4. Gamma-ray attenuation in water.- 9.1.10.5. Photonuclear reactions in water.- 9.1.11. Transparent shielding materials.- 9.1.11.1. Silicate and lead glasses.- 9.1.11.2. Zinc bromide solution.- 9.1.12. Concretes, cements, mortars, and grouts.- 9.1.12.1. General discussion of concrete properties, composition, and technology.- 9.1.12.2. New trends in concrete construction.- 9.1.12.3. Concretes for shielding.- 9.1.12.4. The technology of concrete.- 9.1.12.5. Nuclear heating, radiation damage, and protection of concretes.- 9.1.12.6. Design criteria.- 9.1.12.7. Responsibilities of the concrete engineer and shield designer in undertaking the design and proportioning of concrete for shields.- 9.1.12.8. Ordinary (Portland) concrete.- 9.1.12.9. Serpentine concrete.- 9.1.12.10. The desirability and use of heavy concrete.- 9.1.12.11. Ferrophosphorus concrete.- 9.1.12.12. Iron ore concretes (hematite, goethite, limonite, magnetite).- 9.1.12.13. Limonite and magnetite concretes.- 9.1.12.14. A study of heavy concrete using magnetite from the Dielette mine in France.- 9.1.12.15. Barytes (barite) concretes.- 9.1.12.16. Special concretes based on barytes.- 9.1.12.17. Iron-Portland (scrap-based) very heavy concrete.- 9.1.12.18. Iron-based concretes with addition of a dense mineral, developed at Saclay.- 9.1.12.19. Boron containing, scrap-based, very heavy concretes developed at Saclay.- 9.1.12.20. Ilmenite concrete.- 9.1.12.21. Magnesium oxychloride (MO and Ml) concretes.- 9.1.12.22. Other borated concretes.- 9.1.12.23. Making concretes with desired physical properties.- 9.1.12.24. Prepacked concrete design data for U.S. reactor shields.- 9.1.12.25. Elemental compositions of concretes.- 9.1.12.26. Nuclear properties and constants for concretes.- 9.1.12.27. Technical specification for very heavy concrete.- 9.1.12.28. Cost data for concrete.- 9.1.12.29. Cements.- 9.1.12.31. Mortars.- 9.1.12.32. Grouts.- 9.1.12.33. Sand.- 9.1.13. Air.- 9.2. Materials for shielding against neutrons and gamma rays.- 9.2.1. Lead and Lead alloys.- 9.2.1.1. Introduction.- 9.2.1.2. Applications and design considerations.- 9.2.2. Steel (iron and iron alloys).- 9.2.2.1. Introduction.- 9.2.2.2. Applications and design considerations.- 9.2.3. Uranium.- 9.2.3.1. Introduction.- 9.2.3.2. Applications and design considerations.- 9.2.4. Tungsten.- 9.2.4.1. Introduction.- 9.2.4.2. Applications and design considerations.- 9.2.5. Bismuth.- 9.2.6. Copper.- 9.2.7. Aluminum.- 9.2.8. Berryllium.- 9.2.8.1. Introduction.- 9.2.8.2. Occurrence and extraction.- 9.2.8.3. Properties.- 9.2.8.4. Fabrication.- 9.2.8.5. Applications and design considerations.- 9.2.9. Graphite.- 9.2.9.1. Introduction.- 9.2.9.2. Occurrence and extraction.- 9.2.9.3. Properties.- 9.2.9.4. Fabrication.- 9.2.9.5. Applications and design considerations.- 9.2.10. Water.- 9.2.10.1. Microscopic cross section of fast neutrons in water.- 9.2.10.2. Macroscopic cross sections.- 9.2.10.3. The energy spectrum of neutrons in water.- 9.2.10.4. The fast-neutron dose.- 9.2.11. Organic materials.- 9.2.11.1. Oils and paraffins.- 9.2.11.2. Plastics and rubbers.- 9.2.12. Wood and compressed wood products.- 9.2.13. Metallic and saline hydrides.- 9.2.13.1. Introduction.- 9.2.13.2. Properties of the metallic hydrides.- 9.2.13.3. Properties of the saline hydrides.- 9.2.14. Cadmium and cadmium alloys.- 9.2.14.1. Introduction.- 9.2.14.2. Occurrence and extraction.- 9.2.14.3. Properties.- 9.2.15. Boron and boron compounds.- 9.2.15.1. Introduction.- 9.2.15.2. Occurrence and extraction.- 9.2.15.3. Properties of elementary boron.- 9.2.15.4. Boron compounds.- 9.2.15.5. Effect of reactor conditions.- 9.2.15.6. Dispersions.- 9.2.16. Boral.- 9.2.16.1. Mechanical and physical properties.- 9.2.16.2. Neutron transmission properties.- 9.2.17. Boron-graphite.- 9.2.18. Homogeneous and nonhomogeneous combinations.- 9.2.18.1. Plastics, heavy materials, and boron (Homogeneous combinations).- 9.2.18.2. Soil (Nonhomogeneous combinations).- 9.2.19. Concretes.- 9.2.19.1. Introduction.- 9.2.19.2. Concrete for neutron and gamma ray shields.- 9.2.19.3. Ordinary concrete.- 9.2.19.4. High-density concretes.- 9.2.19.5. Boron-containing concretes.- 9.2.19.6. High temperature concretes.- 9.2.19.7. Location of desired information on concretes.- 9.2.20. Air.- 9.3. Laminated shields.- 9.3.1. Proposals for combinations.- 9.3.1.1. Heavy materials.- 9.3.1.2. Light materials.- 9.3.1.3. Conditions for utilizing these materials.- 9.3.1.4. Activation.- 9.3.1.5. Stresses.- 9.3.2. Proven material combinations.- 9.3.3. Construction of shielding.- 9.3.3.1. Metals.- 9.3.3.2. Synthetics.- 9.3.3.3. Wood.- 9.3.3.4. Water.- 9.3.3.5. Special constructional measures.- 9.3.4. Testing of shielding.- 9.3.4.1. Methods.- 9.3.4.2. Testing of components.- 9.3.4.3. Testing of total shielding.- 9.3.5. Special problems.- 9.4. Effect of heating on properties of concrete.- 9.4.1. Effects of high temperature exposure on concrete.- 9.4.1.1. Introduction.- 9.4.1.2. Water content of Portland cement concrete.- 9.4.1.3. Volume changes.- 9.4.1.4. Effect of heating on structural properties of concrete.- 9.4.1.5. Effect of heating on thermal conductivity.- 9.4.1.6. Effect of heating on temperature distribution in a concrete shield.- 9.4.1.7. Effects of thermal cycling on concrete properties.- 9.4.1.8. Maximum design temperatures for concrete structures.- 9.4.2. Effect of heating on attenuation properties of concrete.- 9.4.2.1. Introduction.- 9.4.2.2. Attenuation mechanisms in concrete.- 9.4.2.3. Experimental information.- 9.4.2.4. Economic considerations.- 9.5. Optimal choice of shielding materials.- 9.5.1. Introduction.- 9.5.2. General remarks.- 9.5.3. Optimization processes.- 9.5.4. General optimization procedure.- 9.5.5. Models for shielding processes in optimization problems.- 9.5.6. Analytical criterions for weight optimization by model conceptions.- 9.5.6.1. Characteristic values of materials.- 9.5.6.2. Criterions for uncoupled radiation groups.- 9.5.6.3. Analysis with coupled radiation groups.- 9.5.7. Example of the weight optimization of a homogeneous concrete shield by variation of the mixing proportion.- 9.5.8. Example for an analytical calculation of optimal composition of two typical materials for the attenuation of neutrons and gamma rays.- 9.5.8.1. Presumption.- 9.5.8.2. Method of optimization.- 9.5.8.3. Partial optimization A (secondary gamma rays from fast neutrons).- 9.5.8.4. Partial optimization B (primary gamma rays and secondary gamma rays from primary thermal neutrons).- 9.5.8.5. Combination of the partial optimizations A and B.- Addendum to Section 9.1.12. Iron Mortars.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews