ISBN-10:
0133915387
ISBN-13:
9780133915389
Pub. Date:
04/14/2015
Publisher:
Pearson
Engineering Mechanics: Dynamics / Edition 14

Engineering Mechanics: Dynamics / Edition 14

by Russell C. Hibbeler

Hardcover

View All Available Formats & Editions
Current price is , Original price is $234.6. You
Select a Purchase Option (New Edition)
  • purchase options
    $81.97 $234.60 Save 65% Current price is $81.97, Original price is $234.6. You Save 65.05967604433077%.
    • Free return shipping at the end of the rental period details
    • Textbook Rentals in 3 Easy Steps  details
    icon-error
    Note: Access code and/or supplemental material are not guaranteed to be included with textbook rental or used textbook.
  • purchase options
    $205.27 $234.60 Save 13% Current price is $205.27, Original price is $234.6. You Save 13%.
  • purchase options
    $179.60 $234.60 Save 23% Current price is $179.6, Original price is $234.6. You Save 23%.
    icon-error
    Note: Access code and/or supplemental material are not guaranteed to be included with textbook rental or used textbook.
  • purchase options

Overview

Engineering Mechanics: Dynamics / Edition 14

NOTE: You are purchasing a standalone product; MasteringEngineering does not come packaged with this content. If you would like to purchase both the physical text and MasteringEngineering search for 0134116992 / 9780134116990 Engineering Mechanics: Dynamics plus MasteringEngineering with Pearson eText -- Access Card Package, 14/e

Package consists of:

  • 0133915387 / 9780133915389 Engineering Mechanics: Dynamics
  • 0133941299 / 9780133941296 MasteringEngineering with Pearson eText -- Standalone Access Card -- for Engineering Mechanics: Statics & Dynamics

MasteringEngineering should only be purchased when required by an instructor.

A Proven Approach to Conceptual Understanding and Problem-solving Skills
Engineering Mechanics: Dynamics excels in providing a clear and thorough presentation of the theory and application of engineering mechanics. Engineering Mechanics empowers students to succeed by drawing upon Professor Hibbeler’s everyday classroom experience and his knowledge of how students learn. This text is shaped by the comments and suggestions of hundreds of reviewers in the teaching profession, as well as many of the author’s students.

The Fourteenth Edition includes new Preliminary Problems, which are intended to help students develop conceptual understanding and build problem-solving skills. The text features a large variety of problems from a broad range of engineering disciplines, stressing practical, realistic situations encountered in professional practice, and having varying levels of difficulty.

More information on:

http://www.pearsonhighered.com/hibbeler-14e-info/index.html

Also Available with MasteringEngineering -- an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Interactive, self-paced tutorials provide individualized coaching to help students stay on track. With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts. The text and MasteringEngineering work together to guide students through engineering concepts with a multi-step approach to problems.



Product Details

ISBN-13: 9780133915389
Publisher: Pearson
Publication date: 04/14/2015
Edition description: New Edition
Pages: 784
Sales rank: 678,608
Product dimensions: 7.90(w) x 9.30(h) x 1.20(d)

About the Author

R.C. Hibbeler graduated from the University of Illinois at Urbana with a BS in Civil Engineering (major in Structures) and an MS in Nuclear Engineering. He obtained his PhD in Theoretical and Applied Mechanics from Northwestern University.

Hibbeler’s professional experience includes postdoctoral work in reactor safety and analysis at Argonne National Laboratory, and structural and stress analysis work at Chicago Bridge and Iron, as well as Sargent and Lundy in Chicago. He has practiced engineering in Ohio, New York, and Louisiana.

Hibbeler currently teaches both civil and mechanical engineering courses at the University of Louisiana, Lafayette. In the past he has taught at the University of Illinois at Urbana, Youngstown State University, Illinois Institute of Technology, and Union College.

Table of Contents

Contents

12 Kinematics of a Particle

12.1 Introduction

12.2 Rectilinear Kinematics: Continuous Motion

12.3 Rectilinear Kinematics: Erratic Motion

12.4 General Curvilinear Motion

12.5 Curvilinear Motion: Rectangular Components

12.6 Motion of a Projectile

12.7 Curvilinear Motion: Normal and Tangential Components

12.8 Curvilinear Motion: Cylindrical Components

12.9 Absolute Dependent Motion Analysis of Two Particles

12.10 Relative-Motion of Two Particles Using Translating Axes

13 Kinetics of a Particle: Force and

Acceleration

13.1 Newton’s Second Law of Motion

13.2 The Equation of Motion

13.3 Equation of Motion for a System

of Particles

13.4 Equations of Motion: Rectangular Coordinates

13.5 Equations of Motion: Normal

and Tangential Coordinates

13.6 Equations of Motion: Cylindrical Coordinates

*13.7 Central-Force Motion and Space Mechanics

14 Kinetics of a Particle: Work and

Energy

14.1 The Work of a Force

14.2 Principle of Work and Energy

14.3 Principle of Work and Energy for a System of Particles

14.4 Power and Efficiency

14.5 Conservative Forces and Potential Energy

14.6 Conservation of Energy

15 Kinetics of a Particle: Impulse

and Momentum

15.1 Principle of Linear Impulse and Momentum

15.2 Principle of Linear Impulse and Momentum for a System of Particles

15.3 Conservation of Linear Momentum for a System of Particles

15.4 Impact

15.5 Angular Momentum

15.6 Relation Between Moment of a Force and Angular Momentum

15.7 Principle of Angular Impulse and Momentum

15.8 Steady Flow of a Fluid Stream

*15.9 Propulsion with Variable Mass

16 Planar Kinematics of a Rigid

Body

16.1 Planar Rigid-Body Motion

16.2 Translation

16.3 Rotation about a Fixed Axis

16.4 Absolute Motion Analysis

16.5 Relative-Motion Analysis: Velocity

16.6 Instantaneous Center of Zero Velocity

16.7 Relative-Motion Analysis: Acceleration

16.8 Relative-Motion Analysis using Rotating Axes

17 Planar Kinetics of a Rigid Body:

Force and Acceleration

17.1 Mass Moment of Inertia

17.2 Planar Kinetic Equations of Motion

17.3 Equations of Motion: Translation

17.4 Equations of Motion: Rotation about a Fixed Axis

17.5 Equations of Motion: General Plane Motion

18 Planar Kinetics of a Rigid Body:

Work and Energy

18.1 Kinetic Energy

18.2 The Work of a Force

18.3 The Work of a Couple Moment

18.4 Principle of Work and Energy

18.5 Conservation of Energy

19 Planar Kinetics of a Rigid Body:

Impulse and Momentum

19.1 Linear and Angular Momentum

19.2 Principle of Impulse and Momentum

19.3 Conservation of Momentum

*19.4 Eccentric Impact

20 Three-Dimensional Kinematics of

a Rigid Body

20.1 Rotation About a Fixed Point

*20.2 The Time Derivative of a Vector Measured from Either a Fixed

or Translating-Rotating System

20.3 General Motion

*20.4 Relative-Motion Analysis Using Translating and Rotating Axes

21 Three-Dimensional Kinetics of a

Rigid Body

*21.1 Moments and Products of Inertia

21.2 Angular Momentum

21.3 Kinetic Energy

*21.4 Equations of Motion

*21.5 Gyroscopic Motion

21.6 Torque-Free Motion

22 Vibrations

*22.1 Undamped Free Vibration

*22.2 Energy Methods

*22.3 Undamped Forced Vibration

*22.4 Viscous Damped Free Vibration

*22.5 Viscous Damped Forced Vibration

*22.6 Electrical Circuit Analogs

A Mathematical Expressions

B Vector Analysis

C The Chain Rule

Fundamental Problems Partial

Solutions and Answers

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews