Extensions and Absolutes of Hausdorff Spaces

Extensions and Absolutes of Hausdorff Spaces

by Jack R. Porter, R. Grant Woods

Paperback(Softcover reprint of the original 1st ed. 1988)

View All Available Formats & Editions
Choose Expedited Shipping at checkout for guaranteed delivery by Wednesday, March 27

Product Details

ISBN-13: 9781461283164
Publisher: Springer New York
Publication date: 09/30/2011
Edition description: Softcover reprint of the original 1st ed. 1988
Pages: 856
Product dimensions: 6.10(w) x 9.25(h) x 0.07(d)

Table of Contents

1 Topological background.- 1.1 Notation and terminology from elementary set theory.- 1.2 Notation and terminology for elementary topological concepts.- 1.3 C(X) as a lattice-ordered ring.- 1.4 Tychonoff spaces, zero-sets, and cozero-sets.- 1.5 Clopen sets and zero-dimensional spaces.- 1.6 Continuous functions.- 1.7 Product spaces and evaluation maps.- 1.8 Perfect functions.- 1.9 C- and C*-embedding.- 1.10 Normal spaces.- 1.11 Pseudocompact spaces.- Problems.- 2 Lattices, filters, and topological spaces.- 2.1 Posets and lattices.- 2.2 Regular open sets, regular closed sets, and semiregular spaces.- 2.3 Filters on a lattice.- 2.4 More lattice properties.- 2.5 Completions of lattices and ordered topological spaces.- 2.6 Ordinals, cardinals, and spaces of ordinals.- Problems.- 3 Boolean algebras.- 3.1 Definition and basic properties.- 3.2 Stone’s representation and duality theorems.- 3.3 Atomless, countable Boolean algebras.- 3.4 Completions of Boolean algebras.- 3.5 The continuum hypothesis and Martin’s Axiom.- Problems.- 4 Extensions of spaces.- 4.1 Basic concepts.- 4.2 Compactifications.- 4.3 One-point compactifications.- 4.4 Wallman compactifications.- 4.5 Gelfand compactifications.- 4.6 The Stone-?ech compactification.- 4.7 Zero-dimensional compactifications.- 4.8 H-closed spaces.- Problems.- 5 Maximum P-extensions.- 5.1 Introductory remarks.- 5.2 P-regular and P-compact spaces.- 5.3 Characterizations of extension properties.- 5.4 E-compact spaces.- 5.5 Examples of E-compactness.- 5.6 Tychonoff extension properties.- 5.7 Zero-dimensional extension properties.- 5.8 Hausdorff extension properties.- 5.9 More on Tychonoff and zero-dimensional extension properties.- 5.10 Two examples of maximum P-extensions.- 5.11 Realcompact spaces and extensions.- Problems.- 6 Extremally disconnected spaces and absolutes.- 6.1 Introduction.- 6.2 Characterization of extremally disconnected spaces.- 6.3 Examples of extremally disconnected spaces.- 6.4 Extremally disconnected spaces and zero-dimensionality.- 6.5 Irreducible functions.- 6.6 The construction of the Iliadis absolute.- 6.7 The uniqueness of the absolute.- 6.8 The construction of EX as a space of open ultrafilters.- 6.9 Elementary properties of EX.- 6.10 Examples of absolutes.- 6.11 The Banaschewski absolute.- Problems.- 7 H-closed extensions.- 7.1 Strict and simple extensions.- 7.2 The Fomin extension.- 7.3 One-point H-closed extensions.- 7.4 Partitions of ?X\X.- 7.5 Minimal Hausdorff spaces.- 7.6 p-maps.- 7.7 An equivalence relation on H(X).- Problems.- 8 Further properties and generalization of absolutes.- 8.1 Introduction.- 8.2 Absolutes and H-closed extensions.- 8.3 Absolutes and extension properties.- 8.4 Covers of topological spaces.- 8.5 Completions of C(X) vs. C(EX).- Problems.- 9 Categorical interpretations of absolutes and extensions.- 9.1 Introduction.- 9.2 Categories, functors, natural transformations, and subcategories.- 9.3 Topological categories.- 9.4 Morphisms.- 9.5 Products and coproducts.- 9.6 Reflective and epireflective subcategories.- 9.7 Coreflections.- 9.8 Projective covers.- Problems.- Notes.- List of Symbols.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews