ISBN-10:
9048174473
ISBN-13:
9789048174478
Pub. Date:
11/23/2010
Publisher:
Springer Netherlands
Factorization Method in Quantum Mechanics / Edition 1

Factorization Method in Quantum Mechanics / Edition 1

by Shi-Hai Dong
Current price is , Original price is $159.99. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Product Details

ISBN-13: 9789048174478
Publisher: Springer Netherlands
Publication date: 11/23/2010
Series: Fundamental Theories of Physics , #150
Edition description: 2007
Pages: 289
Product dimensions: 6.10(w) x 9.25(h) x 0.36(d)

Table of Contents

PART I - Introduction. 1: Introduction. 1.1 Basic review. 1.2. Motivations and aims.
PART II – Method. 2: Theory. 2.1. Introduction. 2.2. Formalism. 3: Lie Algebras SU(2) and SU(1,1). 3.1. Introduction. 3.2. Abstract groups. 3.3. Matrix representation. 3.4. properties of groups SU(2) and SO(3). 3.5. Properties of non-compact groups SO(2,1) and SU(1,1). 3.6. Generators of Lie groups SU(2) and SU(1,1). 3.7. Irreducible representations. 3.8. Irreducible unitary representations. 3.9. Concluding remarks.
PART III – Applications in Non-Relativistic Quantum mechanics. 4: Harmonic Oscillator. 4.1. Introduction. 4.2. Exact solutions. 4.3. Ladder operators. 4.4. Bargmann-Segal transformations. 4.5. Single mode realization of dynamic group SU(1,1). 4.6. Matrix elements. 4.7. Coherent states. 4.8. Franck-Condon factors. 4.9. Concluding remarks. 5: Infinitely Deep Square-Well Potential. 5.1. Introduction. 5.2. Ladder operators for infinitely deep square-well potential. 5.3. Realization of dynamic group SU(1,1) and matrix elements. 5.4. Ladder operators for infinitely deep symmetric well potential. 5.5. SUSYQM approach to infinitely deep square-well potential. 5.6. Perelomov coherent states. 5.7. Barut-Girardello coherent states. 5.8. Concluding remarks. 6: Morse Potential. 6.1. Introduction. 6.2. Exact solutions. 6.3. Ladder operators for the Morse potential. 6.4. Realization of dynamic group SU(2). 6.5. Matrix elements. 6.6. Harmonic limit. 6.7. Franck-Condon factors. 6.8. Transition probability. 6.9. Realization of dynamic group SU(1,1). 6.10. Concluding remarks. 7: Pöschl-Teller Potential. 7.1. Introduction. 7.2. Exact solutions. 7.3. Ladder operators. 7.4. Realization of dynamic group SU(2). 7.5. Alternative approach to derive ladder operators. 7.6. Harmonic limit. 7.7. Expansions of the coordinate x and momentum p from the SU(2) generators.7.8. Concluding remarks. 8: Pseudoharmonic Oscillator. 8.1. Introduction. 8.2. Exact solutions in one dimension. 8.3. Ladder operators. 8.4. Barut-Girardello coherent states. 8.5. Thermodynamic properties. 8.6. Pseudoharmonic oscillator in arbitrary dimensions. 8.7. Recurrence relations among matrix elements. 8.8. Concluding remarks. 9: Algebraic Approach to an Electron in a Uniform Magnetic Field. 9.1. Introduction. 9.2. Exact solutions. 9.3. Ladder operators. 9.4. Concluding remarks. 10: Ring-Shaped Non-Spherical Oscillator. 10.1. Introduction. 10.2. Exact solutions. 10.3. Ladder operators. 10.4. Realization of dynamic group. 10.5. Concluding remarks. 11: Generalized Laguerre Functions. 11.1. Introduction. 11.2. generalized Laguerre functions. 11.3. Ladder operators and realization of dynamic group SU(1,1). 11.4. Concluding remarks. 12: New Non-Central Ring-Shaped Potential. 12.1. Introduction. 12.2. Bound states. 12.3. Ladder operators. 12.4. Mean values. 12.5. Continuum states. 12.6. Concluding remarks. 13: Pöschl-Teller Like Potential. 13.1. Introduction. 13.2. Exact solutions. 13.3. Ladder operators. 13.4. Realization of dynamic group and matrix elements. 13.5. Infinitely square-well and harmonic limits. 13.6. Concluding remarks. 14: Position-Dependent Mass Schrödinger Equation for a Singular Oscillator. 14.1. Introduction. 14.2. Position-dependent effective mass Schrödinger equation for harmonic oscillator. 14.3. Singular oscillator with a position-dependent effective mass. 14.4. Complete solutions. 14.5. Another position-dependent effective mass. 14.6. Concluding remarks.
PART IV – Applications in Relativistic Quantum Mechanics. 15: SUSYQM and SKWB Approach to the Dirac Equation with a Coulomb Potential in 2+1 Dimensions. 15.1. Introduction. 15.2. Dirac equation in 2+1 dimensions. 15.3. Exact solutions. 15.4. SUSYQM

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews