Fluidmechanisch und elektrophysikalisch optimierte Entladungsstrecken f�r CO2-Hochleistungslaser

Fluidmechanisch und elektrophysikalisch optimierte Entladungsstrecken f�r CO2-Hochleistungslaser

by Wolfgang Pfeiffer (With)

Paperback(1998)

$69.99
Choose Expedited Shipping at checkout for guaranteed delivery by Wednesday, October 16

Overview

In der materialbearbeitenden Industrie ist der Kohlendioxid-(CO2)-Gaslaser der am häufigsten eingesetzte Lasertyp. Trotz dieses erreichten Industriestandards verbleibt ein Forschungs- und Entwicklungsbedarf insbesondere hinsichtlich Systemwirkungsgrad, Fokussierbarkeit der Strahlung sowie Systemkompaktheit. - Die Arbeit setzt an dieser Stelle ein. Durch eine geeignete Gestaltung der Gasströmung in Kombination mit einem darauf abgestimmten Elektrodendesign kann eine hohe optische Qualität des laseraktiven Mediums realisiert werden. Diese Grundvoraussetzung für eine gute Fokussierbarkeit der Strahlung erlaubt zugleich einen höheren Wirkungsgrad und eine höhere Leistungsdichte zu realisieren, also auch Kompaktheit. Für eine optimale Gestaltung der Gasentladungsstrecken ist eine genaue Kenntnis der relevanten fluidmechanischen und elektrophysikalischen Vorgänge unerläßlich. Es werden deshalb interferometrische Verfahren zur Bestimmung von Temperaturleitfähigkeit, Drall sowie der Gasdichteverteilung in schnell längsgeströmten hochfrequenzangeregten Gasentladungsstrecken vorgestellt. - Für eine gezielte Kompensation bzw. Beeinflussung dieser Vorgänge werden konkrete Gestaltungen von Strömungsführung und Elektrodenform vorgeschlagen. Damit können Gasentladungsstrecken realisiert werden, die bei höchstmöglichen Strömungsgeschwindigkeiten und hohen Leistungsdichten stabile Gasentladungen bei hoher optischer Qualität produzieren. Aus dem Inhalt: Liste der verwendeten Symbole / Einleitung / Fluidmechanische Grundlagen der Kohlendioxidlaser / Zustandsgleichungen der quasi-eindimensionalen Strömung / Die Interferometrie als optisches Meßverfahren / Strömungsvorgänge in schnellgeströmten Rohren ohne Gasentladung / turbulenz und Drall bei Rohrströmungen / Wärmedurchgang bei Gasentladungsrohren / Phasendeformation in einer Gasentladungsstrecke / Betriebsbereiche von Gasentladungen / Bemer

Product Details

ISBN-13: 9783519062394
Publisher: Vieweg+Teubner Verlag
Publication date: 12/05/2012
Series: Laser in der Materialbearbeitung
Edition description: 1998
Pages: 153
Product dimensions: 6.69(w) x 9.61(h) x 0.01(d)

Table of Contents

Liste der verwendeten Symbole.- 1 Einleitung.- 1.1 Motivation und Ziel.- 1.2 Gliederung der Arbeit.- 2 Fluidmechanische Grundlagen der Kohlendioxidlaser.- 2.1 Kühlungstechnologien für Gaslaser.- 2.1.1 Diffusionslaser.- 2.1.2 Strömungslaser.- 2.1.3 Vergleich der Kühlkonzepte.- 2.2 Wirkung der Gasgemischkomponenten.- 3 Zustandsgieichungen der quasieindimensionalen Strömung.- 3.1 Modellvorstellung der Entladungsstrecke.- 3.2 Grundgleichungen.- 3.3 Ergänzende Betrachtungen.- 3.3.1 Hydrodynamische Einlauflänge der Rohrströmung.- 3.3.2 „Thermal Choking“, thermisches Verstopfen.- 3.3.3 Verlustleistung mit und ohne Strahlungsfeld.- 3.4 Anwendung der Modellierung.- 3.5 Kurzfassung der wichtigsten Ergebnisse.- 4 Die Interferometrie als optisches Meßverfahren.- 4.1 Optische Weglängendifferenzen durch Gasdichtevariationen.- 4.2 Interferometrische Messung von Gasdichteverteilungen.- 4.2.1 Prinzipieller Meßaufbau.- 4.2.2 Schwingungsdämpfung des interferometrischen Meßaufbaus.- 4.3 Kurzfassung der wichtigsten Ergebnisse.- 5 Strömungsvorgänge in schnellgeströmten Rohren ohne Gasentladung.- 5.1 Die Strömungsumlenkungen im Rohrein- und im Rohraustrittsbereich.- 5.2 Verknüpfung von Temperatur- und Geschwindigkeitsverteilung.- 5.3 Das hydrodynamische Einlaufverhalten der Rohrströmung.- 5.4 Vergleich von Theorie und Experiment.- 5.5 Kurzfassung der wichtigsten Ergebnisse.- 6 Turbulenz und Drall bei Rohrströmungen.- 6.1 Bestimmung der Temperaturleitfahigkeit einer turbulenten Rohrströmung.- 6.1.1 Theoretische Modellierung.- 6.1.2 Experimentelle Umsetzung.- 6.2 Bestimmung der Drallzahl einer Rohrströmung.- 6.2.1 Physikalische Beschreibung von Drallströmungen in Rohren.- 6.2.2 Beurteilung von Drallströmungen für schnellgeströmte Gaslaser.- 6.2.3 Möglichkeiten der Drallerzeugung.- 6.2.4 Theoretische Modellierung der Drallströmung.- 6.2.5 Experimentelle Umsetzung.- 6.3 Kurzfassung der wichtigsten Ergebnisse.- 7 Wärmedurchgang bei Gasentladungsrohren.- 7.1 Kalorimetrische Messung der Verlustwärme.- 7.2 Pyrometrische Messung der Rohraußentemperatur.- 7.3 Wärmedurchgangsrechnung.- 7.4 Bestimmung der Aufwärmzeit eines Quarzrohres.- 7.5 Aufwärmzeit eines schnell längsgeströmten Gaslasers.- 7.6 Kurzfassung der wichtigsten Ergebnisse.- 8 Phasendeformation in einer Gasentladungsstrecke.- 8.1 Beispielhafte Modellierung einer Gasentladungsstrecke.- 8.1.1 Homogene Anregung des Gases.- 8.1.2 Inhomogene Anregung des Gases durch geradlinige Elektroden.- 8.1.3 Berücksichtigung von Drallströmungen.- 8.2 Konzentrische, gewendelte Elektrodenformen.- 8.3 Nichtkonzentrische, gewendelte Elektrodenformen.- 8.4 Kurzfassung der wichtigsten Ergebnisse.- 9 Betriebsbereiche von Gasentladungen.- 9.1 Bemerkungen zur Gasentladungsphysik.- 9.2 Analyse der Betriebsbereiche von Gasentladungen.- 9.2.1 Begrenzung durch Normalstromeffekt und Filamentierungsgrad.- 9.2.2 Begrenzung durch lokales Choking.- 9.2.3 Entladungsgüte verschiedener Entladungskonfigurationen.- 9.2.4 Begrenzung durch lokalen Grenzschichtdurchbruch.- 9.3 Kurzfassung der wichtigsten Ergebnisse.- 10 Bemerkungen zur Kleinsignalverstärkung.- 11 Auslegung von Lasersystemen und Entladungsstrecken.- 11.1 Systemauslegung als Folge gewünschter Strahlparameter.- 11.2 Gestaltung der Gasströmung.- 11.3 Gestaltung der Elektroden.- 11.4 Aktiv fokussierend sowie defokussierend wirkende Elektrodenformen.- 11.5 Demonstration der erreichten konkreten Ergebnisse.- 12 Zusammenfassung.- A Anhang.- A.1 Stoffwerte und Zustandsbeschreibungen für ternäre Gasgemische.- A.2 Anmerkungen zur Messung von Gasmassenflüssen.- A.3 Verknüpfung von Gasdichte und Brechungsindex.- A.3.1. Betrachtung des Sonderfalls abseits der Resonanzstellen.- A.3.2. Betrachtung des Sonderfalls in einer Resonanzstelle.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews