ISBN-10:
0792371127
ISBN-13:
9780792371120
Pub. Date:
08/31/2001
Publisher:
Springer Netherlands
Gauss Diagram Invariants for Knots and Links / Edition 1

Gauss Diagram Invariants for Knots and Links / Edition 1

by T. Fiedler

Hardcover

Current price is , Original price is $139.99. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Overview

Gauss diagram invariants are isotopy invariants of oriented knots in- manifolds which are the product of a (not necessarily orientable) surface with an oriented line. The invariants are defined in a combinatorial way using knot diagrams, and they take values in free abelian groups generated by the first homology group of the surface or by the set of free homotopy classes of loops in the surface. There are three main results: 1. The construction of invariants of finite type for arbitrary knots in non­ orientable 3-manifolds. These invariants can distinguish homotopic knots with homeomorphic complements. 2. Specific invariants of degree 3 for knots in the solid torus. These invariants cannot be generalized for knots in handlebodies of higher genus, in contrast to invariants coming from the theory of skein modules. 2 3. We introduce a special class of knots called global knots, in F x lR and we construct new isotopy invariants, called T-invariants, for global knots. Some T-invariants (but not all !) are of finite type but they cannot be extracted from the generalized Kontsevich integral, which is consequently not the universal invariant of finite type for the restricted class of global knots. We prove that T-invariants separate all global knots of a certain type. 3 As a corollary we prove that certain links in 5 are not invertible without making any use of the link group! Introduction and announcement This work is an introduction into the world of Gauss diagram invariants.

Product Details

ISBN-13: 9780792371120
Publisher: Springer Netherlands
Publication date: 08/31/2001
Series: Mathematics and Its Applications , #532
Edition description: 2001
Pages: 412
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

Preface. Introduction and announcement. 1. The space of diagrams. 2. Invariants of knots and links by Gauss sums. 3. Applications. 4. Global knot theory in F2xR. 5. Isotopies with restricted cusp crossing for fronts with exactly two cusps of Legendre knots in ST*R2. Bibliography. Index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews