Improving the Performance of a Roof Top Air-Conditioning Unit by Refrigerant Circuitry Optimization

Improving the Performance of a Roof Top Air-Conditioning Unit by Refrigerant Circuitry Optimization

by nist
Improving the Performance of a Roof Top Air-Conditioning Unit by Refrigerant Circuitry Optimization

Improving the Performance of a Roof Top Air-Conditioning Unit by Refrigerant Circuitry Optimization

by nist

Paperback

$13.99 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

This study demonstrates the performance improvement of an air-to-air roof top unit (RTU) achieved by optimizing an evaporator‰s refrigerant circuitry using evolutionary algorithms. The subject of this study is a unit with a cooling capacity of 7.5 Tons (26.4 kW). The RTU employs two separate refrigerant cycles having separate compressors, condensers, and thermostatic expansion valves (TXV) but using a single evaporator slab in which two separate refrigerant circuits are implemented.

We modified the RTU by replacing the refrigerant-to-air condensers with water cooled brazed plate heat exchangers in order to facilitate testing. Performance tests were conducted in a conditioned environmental chamber in line with AHRI
standard 340/360; in order to accomplish this, we maintained the liquid line saturation pressure and subcooling from the manufacturer‰s test data by adjusting the condenser water flow rate and temperature. We also measured the in-situ air velocity profile using Particle Image Velocimetry (PIV), a non-intrusive,
laser-based technique. The measurements showed that the range of air velocities passing through the heat exchanger varied from 0.5 ms-1 to 3.0 ms-1, with the integrated average of the measurements being 1.75 ms-1. The PIV data was used to generate a map of the air flow distribution through the heat exchanger, which served as the basis for refrigerant circuitry optimization.

Product Details

ISBN-13: 9781496033192
Publisher: CreateSpace Publishing
Publication date: 02/24/2014
Pages: 74
Product dimensions: 8.50(w) x 11.00(h) x 0.15(d)
From the B&N Reads Blog

Customer Reviews