Integrated Photonics for Sensing Applications
Photonic Integrated Circuits for Sensing Applications delves into the fascinating world of sensors within the realm of integrated photonics. The book begins with a historical overview, tracing the evolution of spectroscopic sensing techniques such as FTIR, Raman, SPR, and reflectometry, each contributing to the field’s growth. It emphasizes the transformative potential of photonic integrated circuit (PIC) sensor systems by showcasing their advantages in achieving low SWAP-C metrics (size, weight, power, and cost) while maintaining high performance. Complete with technical insights, the book sets the stage for understanding how PICs are revolutionizing sensing applications across diverse industries.

Beyond the introductory scope, the book thoroughly examines the components that constitute PIC sensor systems, including waveguides (operating below and above 1550 nm), ring resonators, photonic crystals, and MZ interferometers. It also explores integrated systems designed for chem–bio sensing applications, leveraging biofunctionalization and sorbent technologies. With attention to manufacturing scalability, topics such as materials, PDK development, and sensor packaging are addressed, ensuring readers grasp the practical aspects of producing advanced sensor systems at scale.
1147537468
Integrated Photonics for Sensing Applications
Photonic Integrated Circuits for Sensing Applications delves into the fascinating world of sensors within the realm of integrated photonics. The book begins with a historical overview, tracing the evolution of spectroscopic sensing techniques such as FTIR, Raman, SPR, and reflectometry, each contributing to the field’s growth. It emphasizes the transformative potential of photonic integrated circuit (PIC) sensor systems by showcasing their advantages in achieving low SWAP-C metrics (size, weight, power, and cost) while maintaining high performance. Complete with technical insights, the book sets the stage for understanding how PICs are revolutionizing sensing applications across diverse industries.

Beyond the introductory scope, the book thoroughly examines the components that constitute PIC sensor systems, including waveguides (operating below and above 1550 nm), ring resonators, photonic crystals, and MZ interferometers. It also explores integrated systems designed for chem–bio sensing applications, leveraging biofunctionalization and sorbent technologies. With attention to manufacturing scalability, topics such as materials, PDK development, and sensor packaging are addressed, ensuring readers grasp the practical aspects of producing advanced sensor systems at scale.
210.0 Pre Order
Integrated Photonics for Sensing Applications

Integrated Photonics for Sensing Applications

Integrated Photonics for Sensing Applications

Integrated Photonics for Sensing Applications

Paperback

$210.00 
  • SHIP THIS ITEM
    Available for Pre-Order. This item will be released on June 1, 2026

Related collections and offers


Overview

Photonic Integrated Circuits for Sensing Applications delves into the fascinating world of sensors within the realm of integrated photonics. The book begins with a historical overview, tracing the evolution of spectroscopic sensing techniques such as FTIR, Raman, SPR, and reflectometry, each contributing to the field’s growth. It emphasizes the transformative potential of photonic integrated circuit (PIC) sensor systems by showcasing their advantages in achieving low SWAP-C metrics (size, weight, power, and cost) while maintaining high performance. Complete with technical insights, the book sets the stage for understanding how PICs are revolutionizing sensing applications across diverse industries.

Beyond the introductory scope, the book thoroughly examines the components that constitute PIC sensor systems, including waveguides (operating below and above 1550 nm), ring resonators, photonic crystals, and MZ interferometers. It also explores integrated systems designed for chem–bio sensing applications, leveraging biofunctionalization and sorbent technologies. With attention to manufacturing scalability, topics such as materials, PDK development, and sensor packaging are addressed, ensuring readers grasp the practical aspects of producing advanced sensor systems at scale.

Product Details

ISBN-13: 9780443265785
Publisher: Elsevier Science
Publication date: 06/01/2026
Series: Integrated Photonics: Application-Specific Design and Manufacturing
Pages: 350
Product dimensions: 6.00(w) x 9.00(h) x 0.00(d)

About the Author

Anu Agarwal is a Principal Research Scientist at MIT, where she is developing an integrated Si-CMOS compatible platform of linear and non-linear materials for photonic devices and systems, especially in the mid-IR regime, for hyperspectral imaging and chem-bio sensing, because most chemical pollutants and biological toxins have their fingerprints in this range.

Benjamin Miller joined the University of Rochester faculty in 1996, where he is currently Dean’s Professor of Dermatology, Biochemistry and Biophysics, Biomedical Engineering, and Optics. His group’s expertise in interferometric and photonic sensing has been applied to the development of several novel optical biosensor platforms, and his group’s work on RNA-targeted drug discovery has resulted in synthetic compounds targeting RNAs involved in several human diseases.

Juejun (JJ) Hu is currently the John F. Elliott Professor of Materials Science and Engineering at MIT. His primary research interest covers new optical materials exemplified by chalcogenide compounds, as well as enhanced photon-matter interactions in nanophotonic structures. He has authored and coauthored over 150 refereed journal publications and technologies developed in his lab have led to several spin-off companies.

Table of Contents

1. Introduction to PIC Sensors
2. Waveguide material platforms for short-wave IR sensing with a focus on silicon nitride
3. Non SiN waveguide material platforms for visible and near IR sensing
4. Waveguide platforms for mid-wave IR sensing
5. On-chip spectrometers for sensing
6. On-chip widely tunable lasers for sensing
7. Refractive index sensing
8. Direct absorption spectroscopy with dispersive methods
9. Raman (WERS), SERS, fluorescence spectroscopy
10. Functionalization of PICs for molecular adsorption in sensing
11. Bringing the sample/analyte to the PIC Sensor
12. Packaging: fully integrated sensor devices
13. Future of PIC Sensors: Development of PDKs, ADKs, and standards

What People are Saying About This

From the Publisher

An authoritative reference for the design, manufacturing, testing, and deployment of integrated photonic sensors and sensing systems

From the B&N Reads Blog

Customer Reviews