ISBN-10:
0070460833
ISBN-13:
9780070460836
Pub. Date:
03/28/1998
Publisher:
McGraw-Hill Higher Education
Introduction to Electromagnetic Fields / Edition 3

Introduction to Electromagnetic Fields / Edition 3

Hardcover

View All Available Formats & Editions
Current price is , Original price is $127.75. You
Select a Purchase Option (Third Edition)
  • purchase options

Product Details

ISBN-13: 9780070460836
Publisher: McGraw-Hill Higher Education
Publication date: 03/28/1998
Series: McGraw-Hill Series in Electrical and Computer Engineering
Edition description: Third Edition
Pages: 758
Product dimensions: 7.63(w) x 9.80(h) x 1.31(d)

Table of Contents

Preface xvii
Chapter 1 Introduction
1(8)
1.1 A Brief History of the Development of Electromagnetics
2(2)
1.2 Some Applications of Electromagnetic Field Theory
4(2)
1.3 Units
6(3)
Chapter 2 Vector Analysis
9(78)
2.1 Vectors and Scalars
10(1)
2.2 Orthogonal Coordinate Systems
11(3)
2.3 The Rectangular (Cartesian) Coordinate System
14(4)
2.4 The Circular, Cylindrical Coordinate System
18(8)
2.5 The Spherical Coordinate System
26(4)
2.6 Products of Vectors
30(11)
2.6.1 Dot Product
31(3)
2.6.2 Cross Product
34(7)
2.7 Fields
41(2)
2.7.1 Scalar Fields
41(1)
2.7.2 Vector Fields
41(2)
2.8 The Gradient of a Scalar Field
43(5)
2.9 The Line Integral of a Vector Field
48(7)
2.10 The Divergence of a Vector Field
55(8)
2.11 The Divergence Theorem
63(3)
2.12 The Curl of a Vector Field
66(6)
2.13 Stokes' Theorem
72(3)
2.14 Two Important Vector Identities
75(2)
2.15 Summary
77(1)
Problems
78(9)
Chapter 3 Electrostatic Fields
87(100)
3.1 Charge
88(4)
3.2 Coulomb's Law
92(13)
3.3 Electric Field Intensity
105(5)
3.4 Gauss' Law and the Electric Flux Density Vector
110(7)
3.5 Electrostatic Potential
117(9)
3.6 Conductors and Dielectrics
126(10)
3.6.1 Conductors
126(1)
3.6.2 The Electric Dipole
127(1)
3.6.3 Bound Charge and Dielectrics
128(8)
3.7 Boundary Conditions
136(7)
3.8 Stored Energy in the Electrostatic Field
143(3)
3.9 Capacitance
146(10)
3.10 Poisson's and Laplace's Equations
156(6)
3.10.1 Product Solution to Laplace's Equation
159(3)
3.11 Uniqueness of Solution
162(2)
3.12 The Method of Images
164(8)
3.13 Electrostatic Forces
172(3)
3.14 Summary
175(1)
Problems
176(11)
Chapter 4 Magnetostatic Fields
187(100)
4.1 Charges in Motion
187(8)
4.1.1 Conductors, Direct Current, and Ohm's Law
188(3)
4.1.2 Conservation of Charge and Charge Relaxation
191(4)
4.2 Ampere's Force Law
195(5)
4.3 Magnetic Flux Density, the Biot-Savart Law, and the Lorentz Force Equation
200(8)
4.4 Ampere's Law
208(7)
4.5 Magnetostatic Potential and Flux
215(6)
4.5.1 Vector Magnetic Potential
216(4)
4.5.2 Net Outward Flux of B
220(1)
4.6 Magnetic Materials
221(13)
4.6.1 The Magnetic Dipole
221(4)
4.6.2 Magnetization and Bound Current Densities
225(5)
4.6.3 Permeability
230(4)
4.7 Boundary Conditions
234(4)
4.7.1 Boundary Conditions for B and H
234(3)
4.7.2 Boundary Conditions for J
237(1)
4.8 Magnetostatic Circuit Parameters
238(17)
4.8.1 Inductance
238(1)
4.8.2 Resistance
247(6)
4.8.3 Power Density and Joule's Law
253(2)
4.9 Magnetostatic Stored Energy
255(8)
4.9.1 Energy Stored in the Magnetic Field
255(3)
4.9.2 Energy Stored in Inductors
258(5)
4.10 Magnetic Circuits
263(7)
4.11 Magnetostatic Forces
270(4)
4.12 Summary
274(2)
Problems
276(11)
Chapter 5 Maxwell's Equations
287(58)
5.1 Faraday's Law
289(10)
5.2 Gauss' Laws for Electric and Magnetic Fields
299(1)
5.3 Conservation of Charge
299(2)
5.4 Ampere's Law and Displacement Current
301(4)
5.5 Summary of Maxwell's Equations
305(2)
5.6 Constitutive Properties of the Medium
307(4)
5.7 Boundary Conditions on the Field Vectors
311(11)
5.7.1 Boundary Conditions for Perfect Conductors
315(6)
5.7.2 Boundary Conditions for Material Media
321(1)
5.8 Power Flow and the Poynting Vector
322(5)
5.9 The Sinusoidal Steady State
327(9)
5.10 Summary
336(1)
Problems
337(8)
Chapter 6 Propagation of Uniform Plane Waves
345(78)
6.1 The Wave Equation
345(3)
6.2 Uniform Plane Waves
348(15)
6.2.1 Lossless Media (XXX = 0)
351(5)
6.2.2 Lossy Media (XXX = 0)
356(4)
6.2.3 Power Flow
360(3)
6.3 Conductors and Dielectrics Revisited
363(6)
6.3.1 Good Dielectrics (XXX [[ XXX)
365(1)
6.3.2 Good Conductors (XXX ]] XXX)
366(3)
6.4 Skin Depth
369(1)
6.5 Polarization of Uniform Plane Waves
370(4)
6.6 Group Velocity
374(6)
6.7 Normal Incidence of Uniform Plane Waves on Plane Boundaries
380(15)
6.7.1 Lossless Media (XXX(1) = XXX(2)) = 0)
387(5)
6.7.2 Incidence on Perfect Conductors (XXX(2) = XXX)
392(3)
6.8 Oblique Incidence of Uniform Plane Waves on Plane Boundaries
395(9)
6.8.1 Propagation in Arbitrary Space Directions
396(3)
6.8.2 Snell's Laws
399(2)
6.8.3 Critical Angle of Total Reflection
401(3)
6.9 Oblique Incidence, Lossless Media
404(5)
6.9.1 Perpendicular Polarization
404(2)
6.9.2 Parallel Polarization
406(2)
6.9.3 Brewster Angle of Total Transmission
408(1)
6.10 Oblique Incidence on Perfect Conductors
409(4)
6.10.1 Perpendicular Polarization
409(2)
6.10.2 Parallel Polarization
411(2)
6.11 Summary
413(1)
Problems
414(9)
Chapter 7 Transmission Lines
423(88)
7.1 TEM Waves on Lossless Transmission Lines
426(10)
7.1.1 The Parallel-Plate Transmission Line
433(3)
7.2 Time-Domain Analysis of Lossless Transmission Lines
436(22)
7.2.1 The SPICE Equivalent Circuit of a Lossless Transmission Line
453(5)
7.3 Frequency-Domain Analysis of Lossless Lines
458(20)
7.3.1 Voltage and Current as Functions of Position on the Line
466(5)
7.3.2 Transmission-Line Matching
471(1)
7.3.3 Power Flow
472(6)
7.4 Lossy Transmission Lines
478(10)
7.5 The Per-Unit-Length Parameters
488(12)
7.5.1 The External Parameters l(e), c, and g
491(3)
7.5.2 The Conductor Internal Impedance Parameters r and l(i)
494(6)
7.6 Summary
500(2)
Problems
502(9)
Chapter 8 Waveguides and Cavity Resonators
511(72)
8.1 Separability of the Wave Equation: Modes
513(8)
8.2 The Parallel-Plate Waveguide
521(13)
8.2.1 TM Modes
521(6)
8.2.2 TE Modes
527(4)
8.2.3 Signal Propagation Velocities and Dispersion
531(3)
8.3 Rectangular Waveguides
534(18)
8.3.1 TM Modes
534(6)
8.3.2 TE Modes
540(7)
8.3.3 Waveguide Losses
547(5)
8.4 Cavity Resonators
552(6)
8.4.1 TM Modes
553(2)
8.4.2 TE Modes
555(1)
8.4.3 Quality Factor of the Cavity Resonator
556(2)
8.5 Dielectric Waveguides
558(17)
8.5.1 Wave Equations for the Grounded Dielectric Slab Waveguide
560(1)
8.5.2 TE Modes
561(3)
8.5.3 TM Modes
564(2)
8.5.4 Graphical Solutions to the Characteristic Equations
566(2)
8.5.5 Cutoff Condition and Field Patterns
568(5)
8.5.6 Overview of Optical Fields
573(2)
8.6 Summary
575(2)
Problems
577(6)
Chapter 9 Antennas
583(66)
9.1 The Potential Functions
586(3)
9.2 Elemental Dipole Antennas
589(12)
9.2.1 The Electric (Hertzian) Dipole
590(6)
9.2.2 The Magnetic Dipole (Loop)
596(4)
9.2.3 Radiation Patterns of the Elemental Dipoles
600(1)
9.3 Long Dipole and Monopole Antennas
601(13)
9.4 Antenna Arrays
614(9)
9.4.1 Pattern Multiplication
620(3)
9.5 Antenna Directivity and Gain
623(4)
9.6 Antenna Coupling
627(8)
9.7 The Friis Transmission Equation
635(4)
9.8 Effect of Ground Reflections on Signal Transmission
639(3)
9.9 Summary
642(1)
Problems
643(6)
Appendix A Derivation of Ampere's Law 649(4)
Appendix B Faraday's Law for Moving Contours 653(16)
Problems 665(4)
Appendix C The Smith Chart 669(54)
C.1 Additional Results 679(4)
C.2 High-Frequency Measurement of Impedance 683(3)
C.3 Use of Slotted-Line Data 686(4)
C.4 Transmission-Line Matching 690(15)
C.4.1 Single-Stub Tuners 691(4)
C.4.2 Double-Stub Tuners 695(6)
C.4.3 Quarter-Wave Transformers 701(1)
C.4.4 Broadband Matching and Pads 702(3)
C.5 Applications of Smith Charts to Uniform Plane Wave Propagation 705(10)
C.6 Use of the Smith Chart for Lossy Lines 715(2)
Problems 717(6)
Appendix D Physical Constants, Material Properties, and Other Useful Data 723(4)
Answers to End-of-Chapter Problems 727(20)
Index 747

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews