Laser Processing of Thin Films and Microstructures: Oxidation, Deposition and Etching of Insulators

Laser Processing of Thin Films and Microstructures: Oxidation, Deposition and Etching of Insulators

by Ian W. Boyd

Paperback(Softcover reprint of the original 1st ed. 1987)

View All Available Formats & Editions
Eligible for FREE SHIPPING
  • Want it by Wednesday, October 24?   Order by 12:00 PM Eastern and choose Expedited Shipping at checkout.


Laser Processing of Thin Films and Microstructures: Oxidation, Deposition and Etching of Insulators by Ian W. Boyd

This text aims at providing a comprehensive and up to date treatment of the new and rapidly expanding field of laser pro­ cessing of thin films, particularly, though by no means exclu­ sively, of recent progress in the dielectrics area. The volume covers all the major aspects of laser processing technology in general, from the background and history to its many potential applications, and from the theory to the necessary experimental considerations. It highlights and compares the vast array of processing conditions now available with intense photon beams, as well as the properties of the films and microstructures pro­ duced. Separate chapters deal with the fundamentals of laser interactions with matter, and with experimental considerations. Detailed consideration is also given to film deposition, nuclea­ tion and growth, oxidation and annealing, as well as selective and localized. etching and ablation, not only in terms of the various photon-induced processes, but also with respect to traditional as well as other competing new technologies.

Product Details

ISBN-13: 9783642831386
Publisher: Springer Berlin Heidelberg
Publication date: 12/15/2011
Series: Springer Series in Materials Science , #3
Edition description: Softcover reprint of the original 1st ed. 1987
Pages: 320
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

1. Introduction.- 1.1 Historical Background.- 1.2 Advantages of Laser Technology.- 1.3 Requirements for Laser Processing.- 1.4 Outline.- 2. Interaction and Kinetics.- 2.1 Laser Excitation of Matter.- 2.2 Laser Excitation of the Gas Species.- 2.2.1 Selective Vibrational Excitation.- 2.2.2 Selective Electronic Excitation.- 2.3 Interaction of Laser Radiation with Solids.- 2.3.1 Metals.- 2.3.2 Insulators and Semiconductors.- 2.3.3 Non linear Optical Absorption.- 2.3.4 Plasma Formation.- 2.4 Interactions with Surfaces and Adsorbates.- 2.4.1 Adsorbates.- 2.4.2 Desorption.- 2.4.3 Adsorption.- 2.5 Laser-Induced Heating.- 2.5.1 Thermalization.- 2.5.2 Heating Models.- 2.5.3 Impurity Incorporation.- 2.6 Nucleation and Growth.- 2.7 Chemical Reactions and Growth Rates.- 2.7.1 Low Intensity Levels.- 2.7.2 High Intensity Levels.- 2.7.3 CW Laser Controlled Reaction Rates.- 3. Experimental Considerations.- 3.1 Properties of Laser Beams.- 3.2 Spatial Resolution.- 3.3 Modes of Laser Processing.- 3.3.1 Geometrical Configurations.- 3.3.2 Pattern Generation.- 3.3.3 Process Uniformity and Reproducibility.- 3.3.4 Beam Profile Measurements.- 3.4 The Choice of Laser.- 4. Laser-Assisted Oxidation and Nitridation.- 4.1 Oxidation.- 4.2 Background and Theory.- 4.3 Metal Oxidation.- 4.4 Silicon Oxidation.- 4.4.1 Alternative Processing Techniques.- 4.4.2 Laser-induced Growth.- 4.4.3 Mechanisms of Photonically Enhanced Oxidation.- 4.4.4 Rapid Thermal Oxidation.- 4.5 Oxidation of Compound Semiconductors.- 4.6 Nitridation.- 4.6.1 Thermal Nitridation.- 4.6.2 Laser Nitridation.- 4.7 Laser Curing.- 5. Passivation by Laser Annealing and Melting.- 5.1 Modes of Laser Annealing.- 5.2 Laser Annealing in Oxygen.- 5.3 Oxygen Implantation.- 5.4 Nitrogen Implantation.- 5.5 Impurity Effects.- 5.6 Laser Cleaning of Surfaces.- 6. Laser-Induced Deposition.- 6.1 Background.- 6.2 Metal Oxides.- 6.3 Silicon Oxide.- 6.4 Silicon Nitride.- 6.5 Organic Polymer Formation.- 7. Material Removal.- 7.1 Introduction and Background.- 7.2 Etching.- 7.3 Ablation.- 7.4 Trimming.- 7.5 Cutting and Drilling.- 8. Summary and Conclusions.- 8.1 Properties and Applications.- 8.2 Future Prospects.- 8.3 Postscript.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews