Lasers and Chemical Change

Lasers and Chemical Change

Paperback(Softcover reprint of the original 1st ed. 1981)

View All Available Formats & Editions
Use Express Shipping for guaranteed delivery by December 24 
Qualifying orders placed by 11:59 a.m. ET on Dec. 21 can still be sent to Manhattan, NY addresses. Details

Product Details

ISBN-13: 9783642678288
Publisher: Springer Berlin Heidelberg
Publication date: 11/15/2011
Series: Springer Series in Chemical Physics , #10
Edition description: Softcover reprint of the original 1st ed. 1981
Pages: 500
Product dimensions: 5.98(w) x 9.02(h) x 0.04(d)

Table of Contents

1. Lasers and Chemical Change.- 1.1 Light Amplification and Population Inversion in Chemical Processes.- 1.2 Molecular Rate Processes.- 1.3 Photoselective Chemistry.- 1.3.1 The Di screte Spectrum.- 1.3.2 The Quasicontinuum.- 1.3.3 Radiationless Transitions.- 1.3.4 Dissociative Continuum.- 1.3.5 Ionization.- 1.4 The Road Ahead.- 2. Disequilibrium.- 2.1 Specificity and Selectivity of Chemical Reactions.- 2.1.1 Overview: Microscopic Disequilibrium.- 2.1.2 The Detailed Rate Constant.- 2.1.3 Detailed Balance.- 2.1.4 Energy Disposal and Energy Consumption.- 2.1.5 The Reaction Probability Matrix.- 2.1.6 Measures of Specificity and Selectivity.- 2.1.7 The Maximum Entropy Formalism.- 2.2 Surprisal Analysis.- 2.2.1 The Prior Distribution.- 2.2.2 The Surprisal.- 2.2.3 Vibrational Surprisal.- 2.2.4 The Rotational State Distribution.- 2.2.5 Electronic Excitation.- 2.2.6 Polyatomic Molecules.- 2.2.7 Surprisal Analysis and Collision Dynamics.- 2.2.8 On the Role of Reagent Translation.- 2.3 Molecular Reaction Dynamics.- 2.3.1 Computational Studies.- 2.3.2 Potential Energy Surface(s).- 2.3.3 Bond-Tightening Models.- 2.3.4 Kinematic Models of Collision Dynamics.- 2.3.5 Unimolecular Processes — The RRK Approach.- 2.3.6 Unimolecular Processes — Selectivity and Specificity.- 2.3.7 Preparing the Initial State.- 2.4 State-to-State Processes.- 2.4.1 The Prior Detailed Rate Constant.- 2.4.2 The Exponential Gap Representation.- 2.4.3 Reactive Collisions.- 2.4.4 The Adiabaticity Parameter.- 2.4.5 Polyatomic Molecules.- 2.4.6 Temperature Dependence.- 2.4.7 Electronic Energy Transfer.- 2.4.8 A Laser Bridge for the Exponential Gap.- 2.4.9 Intramolecular Electronic to Vibrational Energy Tansfer: Radiationless Transitions.- 2.5 Macroscopic Disequilibrium.- 2.5.1 The Master Equation: Relaxation of Harmonic Oscillators.- 2.5.2 Rotational Relaxation.- 2.5.3 Separation of Time Scales.- 2.5.4 Vibrational Anharmonicity and V-V Up-Pumping.- 2.5.5 Intermode V-V Transfer.- 2.5.6 From Macroscopic Relaxation to Microscopic Information.- 2.5.7 Thermodynamics of Molecular Disequilibrium.- 2.5.8 Laser Thermodynamics.- Appendices.- 2.A. The Prior Distribution.- 2.B. Practical Surprisal Analysis.- 2.C. Statistical Models, Prior Distributions, and Collision Dynamics.- 2.D. Derivation of the Treanor Distribution.- 3. Photons, Molecules, and Lasers.- 3.1 Interaction of Molecules with Radiation.- 3.1.1 The Golden Rule.- 3.1.2 The Line Shape Function.- 3.1.3 Coherent Interaction.- 3.2 Essential Physics of Lasers.- 3.2.1 The Gain Coefficient.- 3.2.2 Laser Oscillators.- 3.2.3 Laser Radiation and Modes.- 3.2.4 The Laser Rate Equations.- 3.3 Survey of Atomic and Molecular Spectroscopy.- 3.3.1 Atomic Spectra.- 3.3.2 Molecular Spectra.- 3.3.3 Electronic Spectra of Diatomic Molecules.- 3.3.4 Infrared Spectra of Diatomic Molecules.- 3.3.5 Energy Levels of Polyatomic Molecules.- 3.3.6 Infrared Spectra of Polyatomic Molecules.- 3.3.7 The Near Ultraviolet Spectrum of Carbonyl Compounds.- 3.4 Laser Sources.- 3.4.1 Laser Specifications.- 3.4.2 Exciplex Lasers.- 3.4.3 Dye Lasers.- 3.4.4 C02 Lasers.- 4. Chemical Lasers.- 4.1 Survey of Chemical Lasers.- 4.2 Lasing Conditions in Chemical Lasers.- 4.3 Operati on.- 4.3.1 Flash Photolysis: The Iodine Laser as a Model Case.- 4.3.2 Hydrogen Halide Chemical Lasers.- 4.3.3 The Chemical CO Laser.- 4.4 Chemical Laser Kinetics.- 4.4.1 The Rate Equations.- 4.4.2 Rotational Equilibrium.- 4.4.3 Rotational Nonequilibrium.- 4.4.4 cw Chemical Lasers.- 4.5 Some Applications of Chemical Lasers.- 4.5.1 Total Rate Constants, Kinetic Isotope Effects.- 4.5.2 Vibrational Population Ratios from Threshold Time Measurements.- 4.5.3 Gain Probing.- 4.5.4 Energy Transfer Measurements: An Example.- 4.5.5 An Industrial Diagnostic Application.- 5. Laser Chemistry.- 5.1 The Laser Evolution.- 5.2 Bimolecular Reactions.- 5.2.1 Molecular Beam Studies.- 5.2.2 Reactions in the Bulk.- 5.3 Electronic Excitation of Polyatomic Molecules.- 5.3.1 Direct Photodissociation: The A State of ICN.- 5.3.2 Photopredissociation: Formaldehyde.- 5.3.3 Excitation of Bound Electronic States: Biacetyl and Glyoxal.- 5.4 Multiphoton Activation and Fragmentation.- 5.4.1 The Nature of Multiphoton Excitation.- 5.4.2 The Rate Equation Approach.- 5.4.3 Nondissociative Reactions Induced by Multiphoton Absorption.- 5.4.4 Multiphoton Ionization (MPI).- 5.5 The “Compleat” Laser Chemist.- 5.5.1 Prepari ng the Sample.- 5.5.2 Excitation and Probing Techniques.- 5.5.3 Laser-Oriented Absorption Measurements.- 5.6 From the Laboratory to Large-Scale Laser Chemistry.- 5.6.1 Practical Photoselective Chemistry.- 5.6.2 State Selective Chemistry.- 5.7 Synergism.- References.- Author Index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews