Learning the Art of Electronics: A Hands-On Lab Course

Learning the Art of Electronics: A Hands-On Lab Course

ISBN-10:
0521177235
ISBN-13:
9780521177238
Pub. Date:
03/02/2016
Publisher:
Cambridge University Press
ISBN-10:
0521177235
ISBN-13:
9780521177238
Pub. Date:
03/02/2016
Publisher:
Cambridge University Press
Learning the Art of Electronics: A Hands-On Lab Course

Learning the Art of Electronics: A Hands-On Lab Course

$76.99 Current price is , Original price is $76.99. You
$76.99 
  • SHIP THIS ITEM
    This item is available online through Marketplace sellers.
  • PICK UP IN STORE
    Check Availability at Nearby Stores
$55.02 
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.

    • Condition: Good
    Note: Access code and/or supplemental material are not guaranteed to be included with used textbook.

This item is available online through Marketplace sellers.


Overview

This introduction to circuit design is unusual in several respects. First, it offers not just explanations, but a full course. Each of the twenty-five sessions begins with a discussion of a particular sort of circuit followed by the chance to try it out and see how it actually behaves. Accordingly, students understand the circuit's operation in a way that is deeper and much more satisfying than the manipulation of formulas. Second, it describes circuits that more traditional engineering introductions would postpone: on the third day, we build a radio receiver; on the fifth day, we build an operational amplifier from an array of transistors. The digital half of the course centers on applying microcontrollers, but gives exposure to Verilog, a powerful Hardware Description Language. Third, it proceeds at a rapid pace but requires no prior knowledge of electronics. Students gain intuitive understanding through immersion in good circuit design.

Product Details

ISBN-13: 9780521177238
Publisher: Cambridge University Press
Publication date: 03/02/2016
Edition description: New Edition
Pages: 1150
Product dimensions: 8.10(w) x 9.90(h) x 1.80(d)

About the Author

Tom Hayes reached electronics via a circuitous route that started in law school and eventually found him teaching Laboratory Electronics at Harvard, which he has done for twenty-five years. He has also taught electronics for the Harvard Summer School, the Harvard Extension School, and for seventeen years in Boston University's Department of Physics. He shares authorship of one patent, for a device that logs exposure to therapeutic bright light. He and his colleagues are trying to launch this device with a startup company named Goodlux Technologies. Tom designs circuits as the need for them arises in the electronics course. One such design is a versatile display, serial interface and programmer for use with the microcomputer that students build in the course.

Paul Horowitz is a Professor of Physics and of Electrical Engineering at Harvard University, where in 1974 he originated the Laboratory Electronics course from which emerged The Art of Electronics. In addition to his work in circuit design and electronic instrumentation, his research interests have included observational astrophysics, X-ray and particle microscopy, and optical interferometry. He is one of the pioneers of the search for intelligent life beyond Earth (SETI). He has also served as a member of the JASON Defense Advisory Group. He is the author of some two hundred scientific articles and reports, has consulted widely for industry and government, and is the designer of numerous scientific and photographic instruments.

Table of Contents

1. DC circuits; 2. RC circuits; 3. Diode circuits; 4. Transistors I; 5. Transistors II; 6. Operational amplifiers I; 7. Operational amplifiers II: nice positive feedback; 8. Operational amplifiers III; 9. Operational amplifiers IV: nasty positive feedback; 10. Operational amplifiers V: PID motor control loop; 11. Voltage regulators; 12. MOSFET switches; 13. Group audio project; 14. Logic gates; 15. Logic compilers, sequential circuits, flip-flops; 16. Counters; 17. Memory: state machines; 18. Analog to digital: phase-locked loop; 19. Microcontrollers and microprocessors I: processor/controller; 20. I/O, first assembly language; 21. Bit operations; 22. Interrupt: ADC and DAC; 23. Moving pointers, serial buses; 24. Dallas Standalone Micro, SiLabs SPI RAM; 25. Toys in the attic; Appendices; Index.
From the B&N Reads Blog

Customer Reviews