Uhoh, it looks like your Internet Explorer is out of date.
For a better shopping experience, please upgrade now.
Linear Algebra / Edition 4
Linear Algebra / Edition 4 available in Hardcover
Overview
For courses in Advanced Linear Algebra.
This topselling, theoremproof text presents a careful treatment of the principal topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinitedimensional case where appropriate.
Product Details
ISBN13:  9780130084514 

Publisher:  Pearson 
Publication date:  11/25/2002 
Series:  Featured Titles for Linear Algebra (Advanced) Series 
Edition description:  Subsequent 
Pages:  624 
Sales rank:  135,812 
Product dimensions:  6.00(w) x 9.50(h) x 1.00(d) 
Read an Excerpt
The language and concepts of matrix theory and, more generally, of linear algebra have come into widespread usage in the social and natural sciences, computer science, and statistics. In addition, linear algebra continues to be of great importance in modern treatments of geometry and analysis.
The primary purpose of this fourth edition of Linear Algebra is to present a careful treatment of the principal topics of linear algebra and to illustrate the power of the subject through a variety of applications. Our major thrust emphasizes the symbiotic relationship between linear transformations and matrices. However, where appropriate, theorems are stated in the more general infinitedimensional case. For example, this theory is applied to finding solutions to a homogeneous linear differential equation and the best approximation by a trigonometric polynomial to a continuous function.
Although the only formal prerequisite for this book is a oneyear course in calculus, it requires the mathematical sophistication of typical junior and senior mathematics majors. This book is especially suited for a second course in linear algebra that emphasizes abstract vector spaces, although it can be used in a first course with a strong theoretical emphasis.
The book is organized to permit a number of different courses (ranging from three to eight semester hours in length) to be taught from it. The core material (vector spaces, linear transformations and matrices, systems of linear equations, determinants, diagonalization, and inner product spaces) is found in Chapters 1 through 5 and Sections 6.1 through 6.5. Chapters 6 and 7, on inner product spaces and canonical forms, arecompletely independent and may be studied in either order. In addition, throughout the book are applications to such areas as differential equations, economics, geometry, and physics. These applications are not central to the mathematical development, however, and may be excluded at the discretion of the instructor.
We have attempted to make it possible for many of the important topics of linear algebra to be covered in a onesemester course. This goal has led us to develop the major topics with fewer preliminaries than in a traditional approach. (Our treatment of the Jordan canonical form, for instance, does not require any theory of polynomials.) The resulting economy permits us to cover the core material of the book (omitting many of the optional sections and a detailed discussion of determinants) in a onesemester fourhour course for students who have had some prior exposure to linear algebra.
Chapter 1 of the book presents the basic theory of vector spaces: subspaces, linear combinations, linear dependence and independence, bases, and dimension. The chapter concludes with an optional section in which eve prove that every infinitedimensional vector space has a basis.
Linear transformations and their relationship to matrices are the subject of Chapter 2. We discuss the null space and range of a linear transformation, matrix representations of a linear transformation, isomorphisms, and change of coordinates. Optional sections on dual spaces and homogeneous linear differential equations end the chapter.
The application of vector space theory and linear transformations to systems of linear equations is found in Chapter 3. We have chosen to defer this important subject so that it can be presented as a consequence of the preceding material. This approach allows the familiar topic of linear systems to illuminate the abstract theory and permits us to avoid messy matrix computations in the presentation of Chapters 1 and 2. There are occasional examples in these chapters, however, where we solve systems of linear equations. (Of course, these examples are not a part of the theoretical development.) The necessary background is contained in Section 1.4.
Determinants, the subject of Chapter 4, are of much less importance than they once were. In a short course (less than one year), we prefer to treat determinants lightly so that more time may be devoted to the material in Chapters 5 through 7. Consequently we have presented two alternatives in Chapter 4—a complete development of the theory (Sections 4.1 through 4.3) and a summary of important facts that are needed for the remaining chapters (Section 4.4). Optional Section 4.5 presents an axiomatic development of the determinant.
Chapter 5 discusses eigenvalues, eigenvectors, and diagonalization. One of the most important applications of this material occurs in computing matrix limits. We have therefore included an optional section on matrix limits and Markov chains in this chapter even though the most general statement of some of the results requires a knowledge of the Jordan canonical form. Section 5.4 contains material on invariant subspaces and the CayleyHamilton theorem.
Inner product spaces are the subject of Chapter 6. The basic mathematical theory (inner products; the GramSchmidt process; orthogonal complements; the adjoint of an operator; normal, selfadjoint, orthogonal and unitary operators; orthogonal projections; and the spectral theorem) is contained in Sections 6.1 through 6.6. Sections 6.7 through 6.11 contain diverse applications of the rich inner product space structure.
Canonical forms are treated in Chapter 7. Sections 7.1 and 7.2 develop the Jordan canonical form, Section 7.3 presents the minimal polynomial, and Section 7.4 discusses the rational canonical form.
There are five appendices. The first four, which discuss sets, functions, fields, and complex numbers, respectively, are intended to review basic ideas used throughout the book. Appendix E on polynomials is used primarily in Chapters 5 and 7, especially in Section 7.4. We prefer to cite particular results from the appendices as needed rather than to discuss the appendices independently. DIFFERENCES BETWEEN THE THIRD AND FOURTH EDITIONS
The principal content change of this fourth edition is the inclusion of a new section (Section 6.7) discussing the singular value decomposition and the pseudoinverse of a matrix or a linear transformation between finitedimensional inner product spaces. Our approach is to treat this material as a generalization of our characterization of normal and selfadjoint operators.
The organization of the text is essentially the same as in the third edition. Nevertheless, this edition contains many significant local changes that improve the book. Section 5.1 (Eigenvalues and Eigenvectors) has been streamlined, and some material previously in Section 5.1 has been moved to Section 2.5 (The Change of Coordinate Matrix). Further improvements include revised proofs of some theorems, additional examples, new exercises, and literally hundreds of minor editorial changes.
We are especially indebted to Jane M. Day (San Jose State University) for her extensive and detailed comments on the fourth edition manuscript. Additional comments were provided by the following reviewers of the fourth edition manuscript: Thomas Banchoff (Brown University), Christopher Heil (Georgia Institute of Technology), and Thomas Shemanske (Dartmouth College).
First Chapter
The language and concepts of matrix theory and, more generally, of linear algebra have come into widespread usage in the social and natural sciences, computer science, and statistics. In addition, linear algebra continues to be of great importance in modern treatments of geometry and analysis.
The primary purpose of this fourth edition of Linear Algebra is to present a careful treatment of the principal topics of linear algebra and to illustrate the power of the subject through a variety of applications. Our major thrust emphasizes the symbiotic relationship between linear transformations and matrices. However, where appropriate, theorems are stated in the more general infinitedimensional case. For example, this theory is applied to finding solutions to a homogeneous linear differential equation and the best approximation by a trigonometric polynomial to a continuous function.
Although the only formal prerequisite for this book is a oneyear course in calculus, it requires the mathematical sophistication of typical junior and senior mathematics majors. This book is especially suited for a second course in linear algebra that emphasizes abstract vector spaces, although it can be used in a first course with a strong theoretical emphasis.
The book is organized to permit a number of different courses (ranging from three to eight semester hours in length) to be taught from it. The core material (vector spaces, linear transformations and matrices, systems of linear equations, determinants, diagonalization, and inner product spaces) is found in Chapters 1 through 5 and Sections 6.1 through 6.5. Chapters 6 and 7, on inner product spaces and canonical forms, arecompletely independent and may be studied in either order. In addition, throughout the book are applications to such areas as differential equations, economics, geometry, and physics. These applications are not central to the mathematical development, however, and may be excluded at the discretion of the instructor.
We have attempted to make it possible for many of the important topics of linear algebra to be covered in a onesemester course. This goal has led us to develop the major topics with fewer preliminaries than in a traditional approach. (Our treatment of the Jordan canonical form, for instance, does not require any theory of polynomials.) The resulting economy permits us to cover the core material of the book (omitting many of the optional sections and a detailed discussion of determinants) in a onesemester fourhour course for students who have had some prior exposure to linear algebra.
Chapter 1 of the book presents the basic theory of vector spaces: subspaces, linear combinations, linear dependence and independence, bases, and dimension. The chapter concludes with an optional section in which eve prove that every infinitedimensional vector space has a basis.
Linear transformations and their relationship to matrices are the subject of Chapter 2. We discuss the null space and range of a linear transformation, matrix representations of a linear transformation, isomorphisms, and change of coordinates. Optional sections on dual spaces and homogeneous linear differential equations end the chapter.
The application of vector space theory and linear transformations to systems of linear equations is found in Chapter 3. We have chosen to defer this important subject so that it can be presented as a consequence of the preceding material. This approach allows the familiar topic of linear systems to illuminate the abstract theory and permits us to avoid messy matrix computations in the presentation of Chapters 1 and 2. There are occasional examples in these chapters, however, where we solve systems of linear equations. (Of course, these examples are not a part of the theoretical development.) The necessary background is contained in Section 1.4.
Determinants, the subject of Chapter 4, are of much less importance than they once were. In a short course (less than one year), we prefer to treat determinants lightly so that more time may be devoted to the material in Chapters 5 through 7. Consequently we have presented two alternatives in Chapter 4—a complete development of the theory (Sections 4.1 through 4.3) and a summary of important facts that are needed for the remaining chapters (Section 4.4). Optional Section 4.5 presents an axiomatic development of the determinant.
Chapter 5 discusses eigenvalues, eigenvectors, and diagonalization. One of the most important applications of this material occurs in computing matrix limits. We have therefore included an optional section on matrix limits and Markov chains in this chapter even though the most general statement of some of the results requires a knowledge of the Jordan canonical form. Section 5.4 contains material on invariant subspaces and the CayleyHamilton theorem.
Inner product spaces are the subject of Chapter 6. The basic mathematical theory (inner products; the GramSchmidt process; orthogonal complements; the adjoint of an operator; normal, selfadjoint, orthogonal and unitary operators; orthogonal projections; and the spectral theorem) is contained in Sections 6.1 through 6.6. Sections 6.7 through 6.11 contain diverse applications of the rich inner product space structure.
Canonical forms are treated in Chapter 7. Sections 7.1 and 7.2 develop the Jordan canonical form, Section 7.3 presents the minimal polynomial, and Section 7.4 discusses the rational canonical form.
There are five appendices. The first four, which discuss sets, functions, fields, and complex numbers, respectively, are intended to review basic ideas used throughout the book. Appendix E on polynomials is used primarily in Chapters 5 and 7, especially in Section 7.4. We prefer to cite particular results from the appendices as needed rather than to discuss the appendices independently. DIFFERENCES BETWEEN THE THIRD AND FOURTH EDITIONS
The principal content change of this fourth edition is the inclusion of a new section (Section 6.7) discussing the singular value decomposition and the pseudoinverse of a matrix or a linear transformation between finitedimensional inner product spaces. Our approach is to treat this material as a generalization of our characterization of normal and selfadjoint operators.
The organization of the text is essentially the same as in the third edition. Nevertheless, this edition contains many significant local changes that improve the book. Section 5.1 (Eigenvalues and Eigenvectors) has been streamlined, and some material previously in Section 5.1 has been moved to Section 2.5 (The Change of Coordinate Matrix). Further improvements include revised proofs of some theorems, additional examples, new exercises, and literally hundreds of minor editorial changes.
We are especially indebted to Jane M. Day (San Jose State University) for her extensive and detailed comments on the fourth edition manuscript. Additional comments were provided by the following reviewers of the fourth edition manuscript: Thomas Banchoff (Brown University), Christopher Heil (Georgia Institute of Technology), and Thomas Shemanske (Dartmouth College).
Table of Contents
1. Vector Spaces.
Introduction. Vector Spaces. Subspaces. Linear Combinations and Systems of Linear Equations. Linear Dependence and Linear Independence. Bases and Dimension. Maximal Linearly Independent Subsets.
2. Linear Transformations and Matrices.
Linear Transformations, Null Spaces, and Ranges. The Matrix Representation of a Linear Transformation. Composition of Linear Transformations and Matrix Multiplication. Invertibility and Isomorphisms. The Change of Coordinate Matrix. Dual Spaces. Homogeneous Linear Differential Equations with Constant Coefficients.
3. Elementary Matrix Operations and Systems of Linear Equations.
Elementary Matrix Operations and Elementary Matrices. The Rank of a Matrix and Matrix Inverses. Systems of Linear Equations—Theoretical Aspects. Systems of Linear Equations—Computational Aspects.
4. Determinants.
Determinants of Order 2. Determinants of Order n. Properties of Determinants. Summary—Important Facts about Determinants. A Characterization of the Determinant.
5. Diagonalization.
Eigenvalues and Eigenvectors. Diagonalizability. Matrix Limits and Markov Chains. Invariant Subspaces and the CayleyHamilton Theorem.
6. Inner Product Spaces.
Inner Products and Norms. The GramSchmidt Orthogonalization Process and Orthogonal Complements. The Adjoint of a Linear Operator. Normal and SelfAdjoint Operators. Unitary and Orthogonal Operators and Their Matrices. Orthogonal Projections and the Spectral Theorem. The Singular Value Decomposition and the Pseudoinverse. Bilinear and Quadratic Forms. Einstein's Special Theory of Relativity. Conditioning and the Rayleigh Quotient. The Geometry of Orthogonal Operators.
7. Canonical Forms.
The Jordan Canonical Form I. The Jordan Canonical Form II. The Minimal Polynomial. Rational Canonical Form.
Appendices.
Sets. Functions. Fields. Complex Numbers. Polynomials.
Answers to Selected Exercises.
Index.
Reading Group Guide
1. Vector Spaces.
Introduction. Vector Spaces. Subspaces. Linear Combinations and Systems of Linear Equations. Linear Dependence and Linear Independence. Bases and Dimension. Maximal Linearly Independent Subsets.
2. Linear Transformations and Matrices.
Linear Transformations, Null Spaces, and Ranges. The Matrix Representation of a Linear Transformation. Composition of Linear Transformations and Matrix Multiplication. Invertibility and Isomorphisms. The Change of Coordinate Matrix. Dual Spaces. Homogeneous Linear Differential Equations with Constant Coefficients.
3. Elementary Matrix Operations and Systems of Linear Equations.
Elementary Matrix Operations and Elementary Matrices. The Rank of a Matrix and Matrix Inverses. Systems of Linear Equations—Theoretical Aspects. Systems of Linear Equations—Computational Aspects.
4. Determinants.
Determinants of Order 2. Determinants of Order n. Properties of Determinants. Summary—Important Facts about Determinants. A Characterization of the Determinant.
5. Diagonalization.
Eigenvalues and Eigenvectors. Diagonalizability. Matrix Limits and Markov Chains. Invariant Subspaces and the CayleyHamilton Theorem.
6. Inner Product Spaces.
Inner Products and Norms. The GramSchmidt Orthogonalization Process and Orthogonal Complements. The Adjoint of a Linear Operator. Normal and SelfAdjoint Operators. Unitary and Orthogonal Operators and Their Matrices. Orthogonal Projections and the Spectral Theorem. The Singular Value Decomposition and the Pseudoinverse. Bilinear and Quadratic Forms. Einstein's Special Theory of Relativity. Conditioning and the Rayleigh Quotient. The Geometry of Orthogonal Operators.
7. Canonical Forms.
The Jordan Canonical Form I. The Jordan Canonical Form II. The Minimal Polynomial. Rational Canonical Form.
Appendices.
Sets. Functions. Fields. Complex Numbers. Polynomials.
Answers to Selected Exercises.
Index.
Interviews
1. Vector Spaces.
Introduction. Vector Spaces. Subspaces. Linear Combinations and Systems of Linear Equations. Linear Dependence and Linear Independence. Bases and Dimension. Maximal Linearly Independent Subsets.
2. Linear Transformations and Matrices.
Linear Transformations, Null Spaces, and Ranges. The Matrix Representation of a Linear Transformation. Composition of Linear Transformations and Matrix Multiplication. Invertibility and Isomorphisms. The Change of Coordinate Matrix. Dual Spaces. Homogeneous Linear Differential Equations with Constant Coefficients.
3. Elementary Matrix Operations and Systems of Linear Equations.
Elementary Matrix Operations and Elementary Matrices. The Rank of a Matrix and Matrix Inverses. Systems of Linear Equations—Theoretical Aspects. Systems of Linear Equations—Computational Aspects.
4. Determinants.
Determinants of Order 2. Determinants of Order n. Properties of Determinants. Summary—Important Facts about Determinants. A Characterization of the Determinant.
5. Diagonalization.
Eigenvalues and Eigenvectors. Diagonalizability. Matrix Limits and Markov Chains. Invariant Subspaces and the CayleyHamilton Theorem.
6. Inner Product Spaces.
Inner Products and Norms. The GramSchmidt Orthogonalization Process and Orthogonal Complements. The Adjoint of a Linear Operator. Normal and SelfAdjoint Operators. Unitary and Orthogonal Operators and Their Matrices. Orthogonal Projections and the Spectral Theorem. The Singular Value Decomposition and the Pseudoinverse. Bilinear and Quadratic Forms. Einstein's Special Theory of Relativity. Conditioning and the Rayleigh Quotient. The Geometry of Orthogonal Operators.
7. Canonical Forms.
The Jordan Canonical Form I. The Jordan Canonical Form II. The Minimal Polynomial. Rational Canonical Form.
Appendices.
Sets. Functions. Fields. Complex Numbers. Polynomials.
Answers to Selected Exercises.
Index.
Preface
The language and concepts of matrix theory and, more generally, of linear algebra have come into widespread usage in the social and natural sciences, computer science, and statistics. In addition, linear algebra continues to be of great importance in modern treatments of geometry and analysis.
The primary purpose of this fourth edition of Linear Algebra is to present a careful treatment of the principal topics of linear algebra and to illustrate the power of the subject through a variety of applications. Our major thrust emphasizes the symbiotic relationship between linear transformations and matrices. However, where appropriate, theorems are stated in the more general infinitedimensional case. For example, this theory is applied to finding solutions to a homogeneous linear differential equation and the best approximation by a trigonometric polynomial to a continuous function.
Although the only formal prerequisite for this book is a oneyear course in calculus, it requires the mathematical sophistication of typical junior and senior mathematics majors. This book is especially suited for a second course in linear algebra that emphasizes abstract vector spaces, although it can be used in a first course with a strong theoretical emphasis.
The book is organized to permit a number of different courses (ranging from three to eight semester hours in length) to be taught from it. The core material (vector spaces, linear transformations and matrices, systems of linear equations, determinants, diagonalization, and inner product spaces) is found in Chapters 1 through 5 and Sections 6.1 through 6.5. Chapters 6 and 7, on inner product spaces and canonical forms, are completely independent and may be studied in either order. In addition, throughout the book are applications to such areas as differential equations, economics, geometry, and physics. These applications are not central to the mathematical development, however, and may be excluded at the discretion of the instructor.
We have attempted to make it possible for many of the important topics of linear algebra to be covered in a onesemester course. This goal has led us to develop the major topics with fewer preliminaries than in a traditional approach. (Our treatment of the Jordan canonical form, for instance, does not require any theory of polynomials.) The resulting economy permits us to cover the core material of the book (omitting many of the optional sections and a detailed discussion of determinants) in a onesemester fourhour course for students who have had some prior exposure to linear algebra.
Chapter 1 of the book presents the basic theory of vector spaces: subspaces, linear combinations, linear dependence and independence, bases, and dimension. The chapter concludes with an optional section in which eve prove that every infinitedimensional vector space has a basis.
Linear transformations and their relationship to matrices are the subject of Chapter 2. We discuss the null space and range of a linear transformation, matrix representations of a linear transformation, isomorphisms, and change of coordinates. Optional sections on dual spaces and homogeneous linear differential equations end the chapter.
The application of vector space theory and linear transformations to systems of linear equations is found in Chapter 3. We have chosen to defer this important subject so that it can be presented as a consequence of the preceding material. This approach allows the familiar topic of linear systems to illuminate the abstract theory and permits us to avoid messy matrix computations in the presentation of Chapters 1 and 2. There are occasional examples in these chapters, however, where we solve systems of linear equations. (Of course, these examples are not a part of the theoretical development.) The necessary background is contained in Section 1.4.
Determinants, the subject of Chapter 4, are of much less importance than they once were. In a short course (less than one year), we prefer to treat determinants lightly so that more time may be devoted to the material in Chapters 5 through 7. Consequently we have presented two alternatives in Chapter 4—a complete development of the theory (Sections 4.1 through 4.3) and a summary of important facts that are needed for the remaining chapters (Section 4.4). Optional Section 4.5 presents an axiomatic development of the determinant.
Chapter 5 discusses eigenvalues, eigenvectors, and diagonalization. One of the most important applications of this material occurs in computing matrix limits. We have therefore included an optional section on matrix limits and Markov chains in this chapter even though the most general statement of some of the results requires a knowledge of the Jordan canonical form. Section 5.4 contains material on invariant subspaces and the CayleyHamilton theorem.
Inner product spaces are the subject of Chapter 6. The basic mathematical theory (inner products; the GramSchmidt process; orthogonal complements; the adjoint of an operator; normal, selfadjoint, orthogonal and unitary operators; orthogonal projections; and the spectral theorem) is contained in Sections 6.1 through 6.6. Sections 6.7 through 6.11 contain diverse applications of the rich inner product space structure.
Canonical forms are treated in Chapter 7. Sections 7.1 and 7.2 develop the Jordan canonical form, Section 7.3 presents the minimal polynomial, and Section 7.4 discusses the rational canonical form.
There are five appendices. The first four, which discuss sets, functions, fields, and complex numbers, respectively, are intended to review basic ideas used throughout the book. Appendix E on polynomials is used primarily in Chapters 5 and 7, especially in Section 7.4. We prefer to cite particular results from the appendices as needed rather than to discuss the appendices independently.
DIFFERENCES BETWEEN THE THIRD AND FOURTH EDITIONS
The principal content change of this fourth edition is the inclusion of a new section (Section 6.7) discussing the singular value decomposition and the pseudoinverse of a matrix or a linear transformation between finitedimensional inner product spaces. Our approach is to treat this material as a generalization of our characterization of normal and selfadjoint operators.
The organization of the text is essentially the same as in the third edition. Nevertheless, this edition contains many significant local changes that improve the book. Section 5.1 (Eigenvalues and Eigenvectors) has been streamlined, and some material previously in Section 5.1 has been moved to Section 2.5 (The Change of Coordinate Matrix). Further improvements include revised proofs of some theorems, additional examples, new exercises, and literally hundreds of minor editorial changes.
We are especially indebted to Jane M. Day (San Jose State University) for her extensive and detailed comments on the fourth edition manuscript. Additional comments were provided by the following reviewers of the fourth edition manuscript: Thomas Banchoff (Brown University), Christopher Heil (Georgia Institute of Technology), and Thomas Shemanske (Dartmouth College).
Recipe
1. Vector Spaces.
Introduction. Vector Spaces. Subspaces. Linear Combinations and Systems of Linear Equations. Linear Dependence and Linear Independence. Bases and Dimension. Maximal Linearly Independent Subsets.
2. Linear Transformations and Matrices.
Linear Transformations, Null Spaces, and Ranges. The Matrix Representation of a Linear Transformation. Composition of Linear Transformations and Matrix Multiplication. Invertibility and Isomorphisms. The Change of Coordinate Matrix. Dual Spaces. Homogeneous Linear Differential Equations with Constant Coefficients.
3. Elementary Matrix Operations and Systems of Linear Equations.
Elementary Matrix Operations and Elementary Matrices. The Rank of a Matrix and Matrix Inverses. Systems of Linear Equations—Theoretical Aspects. Systems of Linear Equations—Computational Aspects.
4. Determinants.
Determinants of Order 2. Determinants of Order n. Properties of Determinants. Summary—Important Facts about Determinants. A Characterization of the Determinant.
5. Diagonalization.
Eigenvalues and Eigenvectors. Diagonalizability. Matrix Limits and Markov Chains. Invariant Subspaces and the CayleyHamilton Theorem.
6. Inner Product Spaces.
Inner Products and Norms. The GramSchmidt Orthogonalization Process and Orthogonal Complements. The Adjoint of a Linear Operator. Normal and SelfAdjoint Operators. Unitary and Orthogonal Operators and Their Matrices. Orthogonal Projections and the Spectral Theorem. The Singular Value Decomposition and the Pseudoinverse. Bilinear and Quadratic Forms. Einstein's Special Theory of Relativity. Conditioning and the Rayleigh Quotient. The Geometry of Orthogonal Operators.
7. Canonical Forms.
The Jordan Canonical Form I. The Jordan Canonical Form II. The Minimal Polynomial. Rational Canonical Form.
Appendices.
Sets. Functions. Fields. Complex Numbers. Polynomials.
Answers to Selected Exercises.
Index.
Customer Reviews
Most Helpful Customer Reviews
I could see how this might be a good reference book for Linear Algebra, but I'm using this text in my first course on the subject and it's very very frustrating that it doesn't have the answers to over half of the problems it gives you to work. It's difficult to understand a subject well if you can't easily identify and learn from your mistakes. I've had to procure additional Linear Algebra texts to help me out. On the bright side, its narrative style and more abstract approach has forced me to think for myself and figure things out much more than typical math texts have. I hope that the next edition can find a middle ground by including more solutions.

Generally, when I have a complaint about a math text, it's because it's either too heavy on the proofs, or too heavy on the exercises. I always though those were disjoint events, and then I took a course out of this book. This is essentially a problem book. It is the only math text I've bought in several years which I intend to sell as soon as I've completed the course and found a suitable replacement. In terms of pedagogy, it's horrible. It doesn't look like it's going to be a good reference book either. To be honest, a Schaum's Outlines would have been better, and at 1/10th the cost.

Between my instructor for this course and the explinations in the book there was nothing in this book that I did not understand by the end of the semester. This is a rigorous book which is very clearly written.
