Pub. Date:
Springer Netherlands
Mechanical Response of Composites / Edition 1

Mechanical Response of Composites / Edition 1


Current price is , Original price is $329.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.


Themethodologyfordesigninghigh-performancecompositestructuresisstill evo- ing. The complexity of the response of composite materials and the dif?culties in predicting the composite material properties from the basic properties of the c- stituents result in the need for a well-planned and exhaustive test program. The recommended practice to mitigate the technological risks associated with advanced composite materials is to substantiate the performance and durability of the design in a sequence of steps known as the Building Block Approach. The Building Block Approach ensures that cost and performance objectives are met by testing greater numbers of smaller, less expensive specimens. In this way, technology risks are assessed early in the program. In addition, the knowledge acquired at a given level of structural complexity is built up before progressing to a level of increased complexity. Achieving substantiation of structural performance by testing alone can be p- hibitively expensive because of the number of specimens and components required to characterize all material systems, loading scenarios and boundary conditions. Building Block Approachprogramscan achieve signi?cant cost reductionsby se- ing a synergy between testing and analysis. The more the development relies on analysis, the less expensive it becomes. The use of advanced computational models for the prediction of the mechanical response of composite structures can replace some of the mechanical tests and can signi?cantly reduce the cost of designing with composites while providing to the engineers the information necessary to achieve an optimized design.

Product Details

ISBN-13: 9781402085833
Publisher: Springer Netherlands
Publication date: 06/19/2008
Series: Computational Methods in Applied Sciences , #10
Edition description: 2008
Pages: 314
Product dimensions: 6.30(w) x 9.50(h) x 1.00(d)

Table of Contents

1 Computational Methods for Debonding in Composites, by René de Borst and Joris J.C. Remmers;
2 Material and Failure Models for Textile Composites, by Raimund Rolfes, Gerald Ernst, Matthias Vogler and Christian Hühne;
3 Practical Challenges in Formulating Virtual Tests for Structural Composites, by Brian N. Cox, S. Mark Spearing and Daniel R. Mumm;
4 Analytical and numerical investigation of the length of the cohesive zone in delaminated composite materials, by Albert Turon, Josep Costa, Pedro P. Camanho and Pere Maimi;
5 Combining elastic brittle damage with plasticity to model the non-linear behavior of fiber reinforced laminates, by Clara Schuecker and Heinz E. Pettermann;
6 Study of delamination in composites by using the serial parallel mixing theory and a damage formulation, by Xavier Martinez, Sergio Oller and Ever Barbero;
7 Interaction Between Intraply and Interply Failure in Laminates, by F.P. van der Meer and L.J. Sluys;
8 A Numerical Material Model for Predicting the High Velocity Impact Behaviour of Polymer Composites, by Lucio Raimondo, Lorenzo Iannucci, Paul Robinson and Silvestre T. Pinho;
9 Progressive Damage Modeling of Composite Materials under both Tensile and Compressive Loading Regimes, by N. Zobeiry, A. Forghani, C. McGregor, R. Vaziri and A. Poursartip;
10 Elastoplastic Modeling of Multi-phase Metal Matrix Composite with Void Growth using the Transformation Field Analysis and Governing Parameter Method, by Ernest T.Y. Ng and Afzal Suleman;
11 Prediction of Mechanical Properties of Composite Materials by Asymptotic Expansion Homogenisation, by J.A. Oliveira, J. Pinho-da-Cruz and F. Teixeira-Dias;
12 On Buckling Optimization of a Wind Turbine Blade, by Erik Lund and Leon S. Johansen;
13 Computation of Effective Stiffness Properties for Textile-Reinforced Composites Using X-FEM, by M. Kastner, G. Haasemann, J. Brummund and V. Ulbricht;
14 Development of Domain Superposition Technique forthe Modelling of Woven Fabric Composites, by Wen-Guang Jiang, Stephen R. Hallett and Michael R. Wisnom;
15 Numerical Simulation of Fiber Orientation and Resulting Thermo-elastic Behavior in reinforced Thermo-plastics, by H. Miled, L. Silva. J.F. Agassant and T. Coupez

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews