ISBN-10:
9024732565
ISBN-13:
9789024732562
Pub. Date:
11/30/1987
Publisher:
Springer Netherlands
Micromechanics of Defects in Solids / Edition 2

Micromechanics of Defects in Solids / Edition 2

by T. Mura

Paperback

View All Available Formats & Editions
Current price is , Original price is $159.99. You
Select a Purchase Option (2nd ed. 1987. Softcover reprint of the original 2nd ed. 1987)
  • purchase options
    $151.70 $159.99 Save 5% Current price is $151.7, Original price is $159.99. You Save 5%.
  • purchase options

Product Details

ISBN-13: 9789024732562
Publisher: Springer Netherlands
Publication date: 11/30/1987
Series: Mechanics of Elastic and Inelastic Solids , #3
Edition description: 2nd ed. 1987. Softcover reprint of the original 2nd ed. 1987
Pages: 588
Product dimensions: 6.10(w) x 9.25(h) x 0.36(d)

Table of Contents

1. General theory of eigenstrains.- 1. Definition of eigenstrains.- 2. Fundamental equations of elasticity.- Hooke’s law.- Equilibrium conditions.- Compatibility conditions.- 3. General expressions of elastic fields for given eigenstrain distributions.- Periodic solutions.- Method of Fourier series and Fourier integrals.- Method of Green’s functions.- Isotropic materials.- Cubic crystals.- Hexagonal crystals (transversely isotropic).- 4. Exercises of general formulae.- A straight screw dislocation.- A straight edge dislocation.- Periodic distribution of cuboidal precipitates.- 5. Static Green’s functions.- Isotropic materials.- Anisotropic materials.- Transversely isotropic materials.- Kröner’s formula.- Derivatives of Green’s functions.- Two-dimensional Green’s function.- 6. Inclusions and inhomogeneities.- Inclusions.- Inhomogeneities.- Effect of isotropic elastic moduli on stress.- 7. Dislocations.- Volterra and Mura formulas.- The Indenbom and Orlov formula.- Disclinations.- 8. Dynamic solutions.- Uniformly moving edge dislocation.- Uniformly moving screw dislocation.- 9. Dynamic Green’s functions.- Isotropic materials.- Steady State.- 10. Incompatibility.- Riemann-Christoffel curvature tensor.- 2. Isotropic inclusions.- 11. Eshelby’s solution.- Interior points.- Sphere.- Elliptic cylinder.- Penny-shape.- Flat ellipsoid.- Oblate spheroid.- Prolate spheroid.- Exterior points.- Thermal expansion with central symmetry.- 12. Ellipsoidal inclusions with polynomial eigenstrains.- The I-integrals.- Sphere.- Elliptic cylinder.- Oblate spheroid.- Prolate spheroid.- Elliptical plate.- The Ferrers and Dyson formula.- 13. Energies of inclusions.- Elastic strain energy.- Interaction energy.- Strain energy due to a spherical inclusion.- Elliptic cylinder.- Penny-shaped flat ellipsoid.- Spheroid.- 14. Cuboidal inclusions.- 15. Inclusions in a half space.- Green’s functions.- Ellipsoidal inclusion with a uniform dilatational eigenstrain.- Cuboidal inclusion with uniform eigenstrains.- Periodic distribution of eigenstrains.- Joined half-spaces.- 3. Anisotropic inclusions.- 16. Elastic field of an ellipsoidal inclusion.- 17. Formulae for interior points.- Uniform eigenstrains.- Spheroid.- Cylinder (elliptic inclusion).- Flat ellipsoid.- Eigenstrains with polynomial variation.- Eigenstrains with a periodic form.- 18. Formulae for exterior points.- Examples.- 19. Ellipsoidal inclusions with polynomial eigenstrains in anisotropic media.- Special cases.- 20. Harmonic eigenstrains.- 21. Periodic distribution of spherical inclusions.- 4. Ellipsoidal inhomogeneities.- 22. Equivalent inclusion method.- Isotropic materials.- Sphere.- Penny shape.- Rod.- Anisotropic inhomogeneities in isotropic matrices.- Stress field for exterior points.- 23. Numerical calculations.- Two ellipsoidal inhomogeneities.- 24. Impotent eigenstrains.- 25. Energies of inhomogeneities.- Elastic strain energy.- Interaction energy.- Colunneti’s theorem.- Uniform plastic deformation in a matrix.- Energy balance.- 26. Precipitates and martensites.- Isotropic precipitates.- Anistropic precipitates.- Incoherent precipitates.- Martensitic transformation.- Stress orienting precipitation.- 5. Cracks.- 27. Critical stresses of crakes in isotropic media.- Penny-shaped cracks.- Slit-like cracks.- Flat ellipsoidal cracks.- Crack opening displacement.- 28. Critical stresses of cracks in anisotropic media.- Uniform applied stress.- Non-uniform applied stress.- II integrals for a penny-shaped crack.- II integrals for cubic crystals.- II integrals for transversely isotropic materials.- 29. Stress intensity factor for a flat ellipsoidal crack.- Uniform applied stresses.- Non-uniform applied stresses.- 30. Stress intensity factor for a slit-like crack.- Uniform applied stresses.- Non-uniform applied stresses.- Isotropic materials.- 31. Stress concentration factors.- Simple tension.- Pure shear.- 32. Dugdale-Barenblatt cracks.- BCS model.- Penny shaped crack.- 33. Stress intensity factor for an arbitrarily shaped plane crack.- Numerical examples.- 34. Crack growth.- Energy release rate.- The J-integral.- Fatigue.- Dynamic crack growth.- 6. Dislocations.- 35. Displacement fields.- Parallel dislocations.- A straight dislocation.- 36. Stress fields.- Dislocation segments.- Willis’ formula.- The Asaro et al. formula.- Dislocation loops.- 37. Dislocation density tensor.- Surface dislocation density.- Impotent distribution of dislocations.- 38. Dislocation flux tensor.- Line integral expression of displacement and plastic distortion fields.- The elastic field of moving dislocationswave equations of tensor potentials.- Wave equations of tensor potentials.- 39. Energies and forces.- Dynamic consideration.- 40. Plasticity.- Mathematical theory of plasticity.- Dislocation theory.- Plane strain problems.- Beams and cylinders.- 41. Dislocation model for fatigue crack initiation.- 7. Material properties and related topics.- 42. Macroscopic average.- Average of internal stresses.- Macroscopic strains.- Tanaka-Mori’s theorem.- Image stress.- Random distribution of inclusions-Mori and Tanaka’s theory.- 43. Work-hardening of dispersion hardened alloys.- Work-hardening in simple shear.- Dislocations around an inclusion.- Uniformity of plastic deformation.- 44. Diffusional relaxation of internal and external stresses.- Relaxation of the internal stress in a plastically deformed dispersion strenthened alloy.- Diffusional relaxation process, climb rate of an Orowan loop.- Recovery creep of a dispersion strengthened alloy.- Interfacial diffusional relaxation.- 45. Average elastic moduli of composite materials.- The Voigt approximation.- The Reuss approximation.- Hill’s theory.- Eshelby’s method.- Self-consistent method.- Upper and lower bounds.- Other related works.- 46. Plastic behavior of polycrystalline metals and composites.- Taylor’s analysis.- Self-consistent method.- Embedded weakened zone.- 47. Viscoelasticity of composite materials.- Homogeneous inclusions.- Inhomogeneous inclusions.- Waves in an infinite medium.- 48. Elastic wave scattering.- Dynamic equivalent inclusion method.- Green’s formula.- 49. Interaction between dislocations and inclusions.- Inclusions and dislocations.- Cracks in two-phase materials.- 50. Eigenstrains in lattice theory.- A uniformly moving screw dislocation.- 51. Sliding inclusions.- Shearing Eigenstrains.- Spheroidol inhomogeneous inclusions.- 52. Recent developments.- Inclusions, precipitates, and composites.- Half-spaces.- Non-elastic matrices.- Cracks and inclusions.- Sliding and debonding inclusions.- Dynamic cases.- Miscellaneous.- Appendix 1.- Einstein summation convention.- Kronecker delta.- Permutation tensor.- Appendix 2.- The elastic moduli for isotropic materials.- Appendix 3.- Fourier series and integrals.- Dirac’s delta function and Heaviside’s step function.- Laplace transform.- Appendix 4.- Dislocations pile-up.- References.- Author index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews