Microstrip Lines and Slotlines

Microstrip Lines and Slotlines

by Ramesh Garg, Maurizio Bozzi

Hardcover

$176.70 $186.00 Save 5% Current price is $176.7, Original price is $186. You Save 5%.
Choose Expedited Shipping at checkout for guaranteed delivery by Thursday, March 28

Product Details

ISBN-13: 9781608075355
Publisher: Artech House, Incorporated
Publication date: 05/31/2013
Pages: 589
Product dimensions: 7.20(w) x 10.30(h) x 1.60(d)

Table of Contents

Preface xi

Chapter 1 Microstrip Lines I: Quasi-Static Analyses, Dispersion Models, and Measurements 1

1.1 Introduction 1

1.1.1 Planar Transmission Structures 1

1.1.2 Microstrip Field Configuration 3

1.1.3 Methods of Microstrip Analysis 4

1.2 Quasi-Static Analyses of a Microstrip 5

1.2.1 Modified Conformal Transformation Method 6

1.2.2 Finite Difference Method 11

1.2.3 Integral Equation Method 12

1.2.4 Variational Method in the Fourier Transform Domain 14

1.2.5 Segmentation and Boundary Element Method (SBEM) 16

1.3 Microstrip Dispersion Models 21

1.3.1 Coupled TEM Mode and TM Mode Model 21

1.3.2 An Empirical Relation 22

1.3.3 Dielectric-Loaded Ridged Waveguide Model 22

1.3.4 Empirical Formulae for Broad Frequency Range 24

1.3.5 Planar Waveguide Model 26

1.3.6 Some Comments 27

1.4 Microstrip Transitions 29

1.4.1 Coaxial-to-Microstrip Transition 30

1.4.2 Waveguide-to-Microstrip Transition 31

1.5 Microstrip Measurements 35

1.5.1 Substrate Dielectric Constant 36

1.5.2 Characteristic Impendance 41

1.5.3 Phase Velocity or Effective Dielectric Constant 42

1.5.4 Attenuation Constant 45

1.6 Fabrication 46

1.6.1 Printed Circuit Technologies 47

1.6.2 Hybrid Microwave Integrated Circuits 48

1.6.3 Monolithic Integrated Circuit Technologies 51

References 53

Chapter 2 Microstrip Lines II: Fullwave Analyses, Design Considerations, and Applications 59

2.1 Methods of Fullwave Analysis 59

2.2 Analysis of an Open Microstrip 60

2.2.1 Integral Equation Method in the Space Domain 62

2.2.2 Galerkin's Method in the Spectral Domain 64

2.2.3 Discussion of Results 65

2.3 Analysis of an Enclosed Microstrip 68

2.3.1 Integral Equation Methods 69

2.3.2 Finite Difference Method 73

2.3.3 Discussion of Results 75

2.4 Design Considerations 77

2.4.1 Microstrip Losses 78

2.4.2 Power Handling Capability 82

2.4.3 Effect of Tolerances 89

2.4.4 Effect of Dielectric Anisotropy 91

2.4.5 Design Equations 94

2.4.6 Frequency Range of Operation 103

2.4.7 Lumped Element Model of Microstrip Interconnect 106

2.5 Other Types of Microstrip Lines 109

2.5.1 Suspended and Inverted Microstrip Lines 109

2.5.2 Multilayered Dielectric Microstrip 110

2.5.3 Thin Film Microstrip (TFM) 114

2.5.4 Valley Microstrip Lines 116

2.5.5 Buried Microstrip Line 117

2.5.6 Superconducting Microstrip Circuits 117

2.6 Microstrip Applications 123

2.6.1 Lumped Elements 123

2.6.2 Passive Components 126

2.6.3 Active Components 129

2.6.4 Packages and Assemblies 130

References 131

Chapter 3 Microstrip Discontinuities I: Quasi-Static Analysis and Characterization 139

3.1 Introduction 139

3.2 Discontinuity Capacitance Evaluation 140

3.2.1 Matrix Inversion Method 141

3.2.2 Variational Method 146

3.2.3 Galerkin's Method in the Fourier Transform Domain 149

3.2.4 Use of Line Sources with Charge Reversal 151

3.3 Discontinuity Inductance Evaluation 154

3.4 Characterization of Various Discontinuities 156

3.4.1 Open Ends 157

3.4.2 Gaps in a Microstrip 160

3.4.3 Steps in Width 165

3.4.4 Bends 169

3.4.5 T-junctions 170

3.4.6 Cross Junctions 174

3.4.7 Notch 176

3.4.8 RF Short and Via Hole 178

3.5 Compensated Microstrip Discontinuities 180

3.5.1 Step in Width 180

3.5.2 Bends 181

3.5.3 T-junction 182

References 185

Chapter 4 Microstrip Discontinuities II: Fullwave Analysis and Measurements 189

4.1 Planar Waveguide Analysis 189

4.1.1 Discontinuity Characterization 189

4.1.2 Compensation of Discontinuity Reactances 208

4.1.3 Radiation and Parasitic Coupling 209

4.2 Fullwave Analysis of Discontinuities 218

4.2.1 Galerkin's Method in the Spectral Domain 219

4.2.2 Integral Equation Solution in the Space Domain 222

4.2.3 Time Domain Methods for Microstrip Discontinuity Characterization 223

4.3 Discontinuity Measurements 227

4.3.1 Linear Resonator Method 228

4.3.2 Ring Resonator Method 232

4.3.3 Scattering Parameters Measurement Method 235

References 236

Chapter 5 Slotlines 239

5.1 Introduction 239

5.2 Slotline Analysis 239

5.2.1 Approximate Analysis 241

5.2.2 Transverse Resonance Method 243

5.2.3 Galerkin's Method in the Spectral Domain 246

5.3 Design Considerations 251

5.3.1 Closed-Form Expressions 251

5.3.2 Effect of Metal Thickness 254

5.3.3 Effect of Tolerances 255

5.3.4 Losses in Slotline 256

5.4 Slotline Discontinuities 258

5.4.1 Short End Discontinuty 258

5.4.2 Open End Discontinuity 259

5.5 Variants of Slotline 262

5.5.1 Coupled Microstrip-Slotline 262

5.5.2 Conductor-Backed Slotline 263

5.5.3 Conductor-Backed Slotline with Superstrate 266

5.5.4 Slotlines with Double-Layered Dielectric 267

5.6 Slotline Transitions 268

5.6.1 Coaxial-to-Slotline Transition 268

5.6.2 Microstrip-to-Slotline Cross-Junction Transition 271

5.7 Slotline Applications 278

5.7.1 Circuits Using T-junctions 278

5.7.2 Circuits Using Wideband 180° Phase Shift 287

5.7.3 Hybrid/de Ronde's Branchline Couplers 289

5.7.4 Other Types of Slotline Circuits 296

References 297

Chapter 6 Defected Ground Structure (DGS) 305

6.1 Introduction 305

6.1.1 Basic Structure of DGS 306

6.1.2 Unit Cell and Periodic DGS 309

6.1.3 Advantages and Disadvantages of DGS 311

6.2 DGS Characteristics 311

6.2.1 Stop-Band Properties 312

6.2.2 Slow-Wave Propagation 314

6.2.3 Realization of Transmission Lines with High Characteristic Impedance 319

6.3 Modeling of DGS 320

6.3.1 Full-Wave Modeling 320

6.3.2 Equivalent Circuit Models 320

6.4 Applications of DGS 326

6.4.1 DGS-Based Filters 327

6.4.2 Other DGS-Based Passive Components 333

6.4.3 DGS-Based Active Circuits 338

6.4.4 DGS-Based Antennas 340

References 343

Chapter 7 Coplanar Lines: Coplanar Waveguide and Coplanar Strips 347

7.1 Introduction 347

7.2 Analysis 351

7.2.1 Quasi-Static Conformal Mapping Analysis of CPW 351

7.2.2 Quasi-Static Conformal Mapping Analysis of CPS 369

7.2.3 Fullwave Analysis 375

7.3 Design Considerations 380

7.3.1 Design Equations 381

7.3.2 Dispersion 381

7.3.3 Effect of Metallization Thickness 383

7.4 Losses in Coplanar Lines 386

7.4.1 Dielectric Loss 386

7.4.2 Conductor Loss 387

7.4.3 Radiation and Surface Wave Losses 393

7.5 Effect of Tolerances 396

7.6 Comparison with Microstrip Line and Slotline 399

7.7 Transitions 401

7.7.1 Coax-to-CPW Transitions 401

7.7.2 Microstrip-to-CPS Transitions 403

7.7.3 Microstrip-to-CPW Transition 405

7.7.4 CPW-to-CPS Transitions 406

7.7.5 CPS-to-Slotline Transitions 406

7.7.6 Slotline-to-CPW Transitions 407

7.8 Discontinuities in Coplanar Lines 410

7.8.1 CAD Models for Discontinuities in Coplanar Waveguide Circuits 410

7.8.2 CAD Models for Discontinuities in Coplanar Strips Circuits 415

7.9 Coplanar Line Circuits 417

7.9.1 Circuits with Series and Shunt Reactances in CPW 418

7.9.2 Circuits Using Slotline-CPW Junctions 420

References 425

Chapter 8 Coupled Microstrip Lines 433

8.1 Introduction 433

8.2 General Analysis of Coupled Lines 434

8.2.1 Methods of Analysis 434

8.2.2 Coupled Mode Approach 435

8.2.3 Even-and Odd-Mode Approach 439

8.3 Characteristics of Coupled Microstrip Lines 442

8.3.1 Quasi-Static Analysis 442

8.3.2 Fullwave Analysis 449

8.3.3 Dispersion Models 456

8.4 Measurements on Coupled Microstrip Lines 459

8.4.1 Impedance Measurements 459

8.4.2 Phase Constant Measurements 460

8.5 Design Considerations for Coupled Microstrip Lines 461

8.5.1 Design Equations 462

8.5.2 Losses 469

8.5.3 Effect of Fabrication Tolerances 473

8.5.4 Coupled Microstrip Lines with Dielectric Overlays 474

8.5.5 Effect of Dielectric Anisotropy 478

8.6 Slot-Coupled Microstrip Lines 478

8.7 Coupled Multiconductor Microstrip Lines 483

8.8 Discontinuities in Coupled Microstrip Lines 485

8.8.1 Network Model 485

8.8.2 Open-End Discontinuity 490

References 491

Chapter 9 Substrate Integrated Waveguide (SIW) 497

9.1 Introduction 497

9.1.1 Geometry 498

9.1.2 Operation Principle 499

9.2 Analysis Techniques of SIW 500

9.2.1 Equivalent Rectangular Waveguide 500

9.2.2 Full-wave Modeling of SIW Interconnects 503

9.2.3 Full-wave Modeling of SIW Components 513

9.2.4 Equivalent Circuits Models of SIW Discontinuities 521

9.3 Design Considerations 526

9.3.1 Mechanisms of Loss 526

9.3.2 Guided-wave and Leaky-wave Regions of Operation 531

9.3.3 Band-gap Effects in SIW Structures 532

9.3.4 SIW Design Rules 533

9.4 Other SIW Configurations 533

9.4.1 Substrate integrated Folded Waveguide (SIFW) 534

9.4.2 Half-Mode Substrate Integrated Waveguide (HMSIW) 535

9.4.3 Substrate Integrated Slab Waveguide (SISW) 536

9.4.4 Substrate Integrated Ridge Waveguide (SIRW) 538

9.5 Transitions Between SIW and Planar Transmission Lines 540

9.5.1 Microstrip-to-SIW Transitions 540

9.5.2 CPW-to-SIW Transitions 541

9.6 SIW Components and Antennas 541

9.6.1 Passive Components 543

9.6.2 Active Circuits 547

9.6.3 Antennas 550

9.6.4 System-on-Substrate (SoS) 553

9.7 Fabrication Technologies and Materials 555

9.7.1 Fabrication by PCB and LTCC Technologies 555

9.7.2 Integration of SIW on Silicon 557

9.7.3 Use of Novel Substrate Materials 557

9.7.4 Solutions for High Frequency Operation of SIW 559

References 559

About the Authors 567

Index 569

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews

Microstrip Lines and Slotlines 5 out of 5 based on 0 ratings. 1 reviews.
FRINGEINDEPENEDENTREVIEW More than 1 year ago